gtsam/gtsam_unstable/slam/tests/testSmartStereoProjectionPo...

1114 lines
44 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file TestSmartStereoProjectionPoseFactor.cpp
* @brief Unit tests for ProjectionFactor Class
* @author Chris Beall
* @author Luca Carlone
* @author Zsolt Kira
* @date Sept 2013
*/
// TODO #include <gtsam/slam/tests/smartFactorScenarios.h>
#include <gtsam_unstable/slam/SmartStereoProjectionPoseFactor.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/slam/PoseTranslationPrior.h>
#include <gtsam/slam/ProjectionFactor.h>
#include <gtsam/slam/StereoFactor.h>
#include <boost/assign/std/vector.hpp>
#include <CppUnitLite/TestHarness.h>
#include <iostream>
using namespace std;
using namespace boost::assign;
using namespace gtsam;
// make a realistic calibration matrix
static double fov = 60; // degrees
static size_t w = 640, h = 480;
static double b = 1;
static Cal3_S2Stereo::shared_ptr K(new Cal3_S2Stereo(fov, w, h, b));
static Cal3_S2Stereo::shared_ptr K2(
new Cal3_S2Stereo(1500, 1200, 0, 640, 480, b));
static SmartStereoProjectionParams params;
// static bool manageDegeneracy = true;
// Create a noise model for the pixel error
static SharedNoiseModel model(noiseModel::Isotropic::Sigma(3, 0.1));
// Convenience for named keys
using symbol_shorthand::X;
using symbol_shorthand::L;
// tests data
static Symbol x1('X', 1);
static Symbol x2('X', 2);
static Symbol x3('X', 3);
static Key poseKey1(x1);
static StereoPoint2 measurement1(323.0, 300.0, 240.0); //potentially use more reasonable measurement value?
static Pose3 body_P_sensor1(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2),
Point3(0.25, -0.10, 1.0));
vector<StereoPoint2> stereo_projectToMultipleCameras(const StereoCamera& cam1,
const StereoCamera& cam2, const StereoCamera& cam3, Point3 landmark) {
vector<StereoPoint2> measurements_cam;
StereoPoint2 cam1_uv1 = cam1.project(landmark);
StereoPoint2 cam2_uv1 = cam2.project(landmark);
StereoPoint2 cam3_uv1 = cam3.project(landmark);
measurements_cam.push_back(cam1_uv1);
measurements_cam.push_back(cam2_uv1);
measurements_cam.push_back(cam3_uv1);
return measurements_cam;
}
LevenbergMarquardtParams lm_params;
/* ************************************************************************* */
TEST( SmartStereoProjectionPoseFactor, Constructor) {
SmartStereoProjectionPoseFactor::shared_ptr factor1(new SmartStereoProjectionPoseFactor(model));
}
/* ************************************************************************* */
TEST( SmartStereoProjectionPoseFactor, Constructor2) {
SmartStereoProjectionPoseFactor factor1(model, params);
}
/* ************************************************************************* */
TEST( SmartStereoProjectionPoseFactor, Constructor3) {
SmartStereoProjectionPoseFactor::shared_ptr factor1(new SmartStereoProjectionPoseFactor(model));
factor1->add(measurement1, poseKey1, K);
}
/* ************************************************************************* */
TEST( SmartStereoProjectionPoseFactor, Constructor4) {
SmartStereoProjectionPoseFactor factor1(model, params);
factor1.add(measurement1, poseKey1, K);
}
/* ************************************************************************* */
TEST( SmartStereoProjectionPoseFactor, Equals ) {
SmartStereoProjectionPoseFactor::shared_ptr factor1(new SmartStereoProjectionPoseFactor(model));
factor1->add(measurement1, poseKey1, K);
SmartStereoProjectionPoseFactor::shared_ptr factor2(new SmartStereoProjectionPoseFactor(model));
factor2->add(measurement1, poseKey1, K);
CHECK(assert_equal(*factor1, *factor2));
}
/* *************************************************************************/
TEST_UNSAFE( SmartStereoProjectionPoseFactor, noiseless ) {
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 level_pose = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2),
Point3(0, 0, 1));
StereoCamera level_camera(level_pose, K2);
// create second camera 1 meter to the right of first camera
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
StereoCamera level_camera_right(level_pose_right, K2);
// landmark ~5 meters infront of camera
Point3 landmark(5, 0.5, 1.2);
// 1. Project two landmarks into two cameras and triangulate
StereoPoint2 level_uv = level_camera.project(landmark);
StereoPoint2 level_uv_right = level_camera_right.project(landmark);
Values values;
values.insert(x1, level_pose);
values.insert(x2, level_pose_right);
SmartStereoProjectionPoseFactor factor1(model);
factor1.add(level_uv, x1, K2);
factor1.add(level_uv_right, x2, K2);
double actualError = factor1.error(values);
double expectedError = 0.0;
EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
SmartStereoProjectionPoseFactor::Cameras cameras = factor1.cameras(values);
double actualError2 = factor1.totalReprojectionError(cameras);
EXPECT_DOUBLES_EQUAL(expectedError, actualError2, 1e-7);
// test vector of errors
//Vector actual = factor1.unwhitenedError(values);
//EXPECT(assert_equal(zero(4),actual,1e-8));
}
/* *************************************************************************/
TEST( SmartStereoProjectionPoseFactor, noisy ) {
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 level_pose = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2),
Point3(0, 0, 1));
StereoCamera level_camera(level_pose, K2);
// create second camera 1 meter to the right of first camera
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
StereoCamera level_camera_right(level_pose_right, K2);
// landmark ~5 meters infront of camera
Point3 landmark(5, 0.5, 1.2);
// 1. Project two landmarks into two cameras and triangulate
StereoPoint2 pixelError(0.2, 0.2, 0);
StereoPoint2 level_uv = level_camera.project(landmark) + pixelError;
StereoPoint2 level_uv_right = level_camera_right.project(landmark);
Values values;
values.insert(x1, level_pose);
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 10, 0., -M_PI / 10),
Point3(0.5, 0.1, 0.3));
values.insert(x2, level_pose_right.compose(noise_pose));
SmartStereoProjectionPoseFactor::shared_ptr factor1(new SmartStereoProjectionPoseFactor(model));
factor1->add(level_uv, x1, K);
factor1->add(level_uv_right, x2, K);
double actualError1 = factor1->error(values);
SmartStereoProjectionPoseFactor::shared_ptr factor2(new SmartStereoProjectionPoseFactor(model));
vector<StereoPoint2> measurements;
measurements.push_back(level_uv);
measurements.push_back(level_uv_right);
vector<boost::shared_ptr<Cal3_S2Stereo> > Ks; ///< shared pointer to calibration object (one for each camera)
Ks.push_back(K);
Ks.push_back(K);
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
factor2->add(measurements, views, Ks);
double actualError2 = factor2->error(values);
DOUBLES_EQUAL(actualError1, actualError2, 1e-7);
}
/* *************************************************************************/
TEST( SmartStereoProjectionPoseFactor, 3poses_smart_projection_factor ) {
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
StereoCamera cam1(pose1, K2);
// create second camera 1 meter to the right of first camera
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
StereoCamera cam2(pose2, K2);
// create third camera 1 meter above the first camera
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
StereoCamera cam3(pose3, K2);
// three landmarks ~5 meters infront of camera
Point3 landmark1(5, 0.5, 1.2);
Point3 landmark2(5, -0.5, 1.2);
Point3 landmark3(3, 0, 3.0);
// 1. Project three landmarks into three cameras and triangulate
vector<StereoPoint2> measurements_l1 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark1);
vector<StereoPoint2> measurements_l2 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark2);
vector<StereoPoint2> measurements_l3 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark3);
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
SmartStereoProjectionParams smart_params;
smart_params.triangulation.enableEPI = true;
SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor(model, smart_params));
smartFactor1->add(measurements_l1, views, K2);
SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(model, smart_params));
smartFactor2->add(measurements_l2, views, K2);
SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(model, smart_params));
smartFactor3->add(measurements_l3, views, K2);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
// initialize third pose with some noise, we expect it to move back to original pose3
values.insert(x3, pose3 * noise_pose);
EXPECT(
assert_equal(
Pose3(
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
// cout << std::setprecision(10) << "\n----SmartStereoFactor graph initial error: " << graph.error(values) << endl;
EXPECT_DOUBLES_EQUAL(797312.95069157204, graph.error(values), 1e-7);
// get triangulated landmarks from smart factors
Point3 landmark1_smart = *smartFactor1->point();
Point3 landmark2_smart = *smartFactor2->point();
Point3 landmark3_smart = *smartFactor3->point();
Values result;
gttic_(SmartStereoProjectionPoseFactor);
LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
result = optimizer.optimize();
gttoc_(SmartStereoProjectionPoseFactor);
tictoc_finishedIteration_();
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-5);
// cout << std::setprecision(10) << "SmartStereoFactor graph optimized error: " << graph.error(result) << endl;
GaussianFactorGraph::shared_ptr GFG = graph.linearize(result);
VectorValues delta = GFG->optimize();
VectorValues expected = VectorValues::Zero(delta);
EXPECT(assert_equal(expected, delta, 1e-6));
// result.print("results of 3 camera, 3 landmark optimization \n");
EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
/* ***************************************************************
* Same problem with regular Stereo factors, expect same error!
* ****************************************************************/
// landmark1_smart.print("landmark1_smart");
// landmark2_smart.print("landmark2_smart");
// landmark3_smart.print("landmark3_smart");
// add landmarks to values
values.insert(L(1), landmark1_smart);
values.insert(L(2), landmark2_smart);
values.insert(L(3), landmark3_smart);
// add factors
NonlinearFactorGraph graph2;
graph2.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
graph2.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
typedef GenericStereoFactor<Pose3, Point3> ProjectionFactor;
bool verboseCheirality = true;
graph2.push_back(ProjectionFactor(measurements_l1[0], model, x1, L(1), K2, false, verboseCheirality));
graph2.push_back(ProjectionFactor(measurements_l1[1], model, x2, L(1), K2, false, verboseCheirality));
graph2.push_back(ProjectionFactor(measurements_l1[2], model, x3, L(1), K2, false, verboseCheirality));
graph2.push_back(ProjectionFactor(measurements_l2[0], model, x1, L(2), K2, false, verboseCheirality));
graph2.push_back(ProjectionFactor(measurements_l2[1], model, x2, L(2), K2, false, verboseCheirality));
graph2.push_back(ProjectionFactor(measurements_l2[2], model, x3, L(2), K2, false, verboseCheirality));
graph2.push_back(ProjectionFactor(measurements_l3[0], model, x1, L(3), K2, false, verboseCheirality));
graph2.push_back(ProjectionFactor(measurements_l3[1], model, x2, L(3), K2, false, verboseCheirality));
graph2.push_back(ProjectionFactor(measurements_l3[2], model, x3, L(3), K2, false, verboseCheirality));
// cout << std::setprecision(10) << "\n----StereoFactor graph initial error: " << graph2.error(values) << endl;
EXPECT_DOUBLES_EQUAL(797312.95069157204, graph2.error(values), 1e-7);
LevenbergMarquardtOptimizer optimizer2(graph2, values, lm_params);
Values result2 = optimizer2.optimize();
EXPECT_DOUBLES_EQUAL(0, graph2.error(result2), 1e-5);
// cout << std::setprecision(10) << "StereoFactor graph optimized error: " << graph2.error(result2) << endl;
}
/* *************************************************************************/
TEST( SmartStereoProjectionPoseFactor, jacobianSVD ) {
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
StereoCamera cam1(pose1, K);
// create second camera 1 meter to the right of first camera
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
StereoCamera cam2(pose2, K);
// create third camera 1 meter above the first camera
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
StereoCamera cam3(pose3, K);
// three landmarks ~5 meters infront of camera
Point3 landmark1(5, 0.5, 1.2);
Point3 landmark2(5, -0.5, 1.2);
Point3 landmark3(3, 0, 3.0);
// 1. Project three landmarks into three cameras and triangulate
vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark1);
vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark2);
vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark3);
SmartStereoProjectionParams params;
params.setLinearizationMode(JACOBIAN_SVD);
SmartStereoProjectionPoseFactor::shared_ptr smartFactor1( new SmartStereoProjectionPoseFactor(model, params));
smartFactor1->add(measurements_cam1, views, K);
SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(model, params));
smartFactor2->add(measurements_cam2, views, K);
SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(model, params));
smartFactor3->add(measurements_cam3, views, K);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
values.insert(x3, pose3 * noise_pose);
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
result = optimizer.optimize();
EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
}
/* *************************************************************************/
TEST( SmartStereoProjectionPoseFactor, landmarkDistance ) {
// double excludeLandmarksFutherThanDist = 2;
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
StereoCamera cam1(pose1, K);
// create second camera 1 meter to the right of first camera
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
StereoCamera cam2(pose2, K);
// create third camera 1 meter above the first camera
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
StereoCamera cam3(pose3, K);
// three landmarks ~5 meters infront of camera
Point3 landmark1(5, 0.5, 1.2);
Point3 landmark2(5, -0.5, 1.2);
Point3 landmark3(3, 0, 3.0);
// 1. Project three landmarks into three cameras and triangulate
vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark1);
vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark2);
vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark3);
SmartStereoProjectionParams params;
params.setLinearizationMode(JACOBIAN_SVD);
params.setLandmarkDistanceThreshold(2);
SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor(model, params));
smartFactor1->add(measurements_cam1, views, K);
SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(model, params));
smartFactor2->add(measurements_cam2, views, K);
SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(model, params));
smartFactor3->add(measurements_cam3, views, K);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
values.insert(x3, pose3 * noise_pose);
// All factors are disabled and pose should remain where it is
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
result = optimizer.optimize();
EXPECT(assert_equal(values.at<Pose3>(x3), result.at<Pose3>(x3)));
}
/* *************************************************************************/
TEST( SmartStereoProjectionPoseFactor, dynamicOutlierRejection ) {
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
StereoCamera cam1(pose1, K);
// create second camera 1 meter to the right of first camera
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
StereoCamera cam2(pose2, K);
// create third camera 1 meter above the first camera
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
StereoCamera cam3(pose3, K);
// three landmarks ~5 meters infront of camera
Point3 landmark1(5, 0.5, 1.2);
Point3 landmark2(5, -0.5, 1.2);
Point3 landmark3(3, 0, 3.0);
Point3 landmark4(5, -0.5, 1);
// 1. Project four landmarks into three cameras and triangulate
vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark1);
vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark2);
vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark3);
vector<StereoPoint2> measurements_cam4 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark4);
measurements_cam4.at(0) = measurements_cam4.at(0) + StereoPoint2(10, 10, 1); // add outlier
SmartStereoProjectionParams params;
params.setLinearizationMode(JACOBIAN_SVD);
params.setDynamicOutlierRejectionThreshold(1);
SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor(model, params));
smartFactor1->add(measurements_cam1, views, K);
SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(model, params));
smartFactor2->add(measurements_cam2, views, K);
SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(model, params));
smartFactor3->add(measurements_cam3, views, K);
SmartStereoProjectionPoseFactor::shared_ptr smartFactor4(new SmartStereoProjectionPoseFactor(model, params));
smartFactor4->add(measurements_cam4, views, K);
// same as factor 4, but dynamic outlier rejection is off
SmartStereoProjectionPoseFactor::shared_ptr smartFactor4b(new SmartStereoProjectionPoseFactor(model));
smartFactor4b->add(measurements_cam4, views, K);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(smartFactor4);
graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
values.insert(x3, pose3);
EXPECT_DOUBLES_EQUAL(0, smartFactor1->error(values), 1e-9);
EXPECT_DOUBLES_EQUAL(0, smartFactor2->error(values), 1e-9);
EXPECT_DOUBLES_EQUAL(0, smartFactor3->error(values), 1e-9);
// zero error due to dynamic outlier rejection
EXPECT_DOUBLES_EQUAL(0, smartFactor4->error(values), 1e-9);
// dynamic outlier rejection is off
EXPECT_DOUBLES_EQUAL(6700, smartFactor4b->error(values), 1e-9);
// Factors 1-3 should have valid point, factor 4 should not
EXPECT(smartFactor1->point());
EXPECT(smartFactor2->point());
EXPECT(smartFactor3->point());
EXPECT(smartFactor4->point().degenerate());
EXPECT(smartFactor4b->point());
// Factor 4 is disabled, pose 3 stays put
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
result = optimizer.optimize();
EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
}
//
///* *************************************************************************/
//TEST( SmartStereoProjectionPoseFactor, jacobianQ ){
//
// vector<Key> views;
// views.push_back(x1);
// views.push_back(x2);
// views.push_back(x3);
//
// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
// Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), Point3(0,0,1));
// StereoCamera cam1(pose1, K);
// // create second camera 1 meter to the right of first camera
// Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
// StereoCamera cam2(pose2, K);
// // create third camera 1 meter above the first camera
// Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0));
// StereoCamera cam3(pose3, K);
//
// // three landmarks ~5 meters infront of camera
// Point3 landmark1(5, 0.5, 1.2);
// Point3 landmark2(5, -0.5, 1.2);
// Point3 landmark3(3, 0, 3.0);
//
// vector<StereoPoint2> measurements_cam1, measurements_cam2, measurements_cam3;
//
// // 1. Project three landmarks into three cameras and triangulate
// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
//
// SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor(1, -1, false, false, JACOBIAN_Q));
// smartFactor1->add(measurements_cam1, views, model, K);
//
// SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(1, -1, false, false, JACOBIAN_Q));
// smartFactor2->add(measurements_cam2, views, model, K);
//
// SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(1, -1, false, false, JACOBIAN_Q));
// smartFactor3->add(measurements_cam3, views, model, K);
//
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
//
// NonlinearFactorGraph graph;
// graph.push_back(smartFactor1);
// graph.push_back(smartFactor2);
// graph.push_back(smartFactor3);
// graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
// graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
//
// // Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/100, 0., -M_PI/100), Point3(0.1,0.1,0.1)); // smaller noise
// Values values;
// values.insert(x1, pose1);
// values.insert(x2, pose2);
// values.insert(x3, pose3*noise_pose);
//
//// Values result;
// LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
// result = optimizer.optimize();
// EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
//}
//
///* *************************************************************************/
//TEST( SmartStereoProjectionPoseFactor, 3poses_projection_factor ){
//
// vector<Key> views;
// views.push_back(x1);
// views.push_back(x2);
// views.push_back(x3);
//
// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
// Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), Point3(0,0,1));
// StereoCamera cam1(pose1, K2);
//
// // create second camera 1 meter to the right of first camera
// Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
// StereoCamera cam2(pose2, K2);
//
// // create third camera 1 meter above the first camera
// Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0));
// StereoCamera cam3(pose3, K2);
//
// // three landmarks ~5 meters infront of camera
// Point3 landmark1(5, 0.5, 1.2);
// Point3 landmark2(5, -0.5, 1.2);
// Point3 landmark3(3, 0, 3.0);
//
// typedef GenericStereoFactor<Pose3, Point3> ProjectionFactor;
// NonlinearFactorGraph graph;
//
// // 1. Project three landmarks into three cameras and triangulate
// graph.push_back(ProjectionFactor(cam1.project(landmark1), model, x1, L(1), K2));
// graph.push_back(ProjectionFactor(cam2.project(landmark1), model, x2, L(1), K2));
// graph.push_back(ProjectionFactor(cam3.project(landmark1), model, x3, L(1), K2));
//
// graph.push_back(ProjectionFactor(cam1.project(landmark2), model, x1, L(2), K2));
// graph.push_back(ProjectionFactor(cam2.project(landmark2), model, x2, L(2), K2));
// graph.push_back(ProjectionFactor(cam3.project(landmark2), model, x3, L(2), K2));
//
// graph.push_back(ProjectionFactor(cam1.project(landmark3), model, x1, L(3), K2));
// graph.push_back(ProjectionFactor(cam2.project(landmark3), model, x2, L(3), K2));
// graph.push_back(ProjectionFactor(cam3.project(landmark3), model, x3, L(3), K2));
//
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
// graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
// graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
//
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3));
// Values values;
// values.insert(x1, pose1);
// values.insert(x2, pose2);
// values.insert(x3, pose3* noise_pose);
// values.insert(L(1), landmark1);
// values.insert(L(2), landmark2);
// values.insert(L(3), landmark3);
//
// LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
// Values result = optimizer.optimize();
//
// EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
//}
//
/* *************************************************************************/
TEST( SmartStereoProjectionPoseFactor, CheckHessian) {
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
StereoCamera cam1(pose1, K);
// create second camera
Pose3 pose2 = pose1 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
StereoCamera cam2(pose2, K);
// create third camera
Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
StereoCamera cam3(pose3, K);
// three landmarks ~5 meters infront of camera
Point3 landmark1(5, 0.5, 1.2);
Point3 landmark2(5, -0.5, 1.2);
Point3 landmark3(3, 0, 3.0);
// Project three landmarks into three cameras and triangulate
vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark1);
vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark2);
vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark3);
SmartStereoProjectionParams params;
params.setRankTolerance(10);
SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor(model, params));
smartFactor1->add(measurements_cam1, views, K);
SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(model, params));
smartFactor2->add(measurements_cam2, views, K);
SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(model, params));
smartFactor3->add(measurements_cam3, views, K);
// Create graph to optimize
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
// initialize third pose with some noise, we expect it to move back to original pose3
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
values.insert(x3, pose3 * noise_pose);
// TODO: next line throws Cheirality exception on Mac
boost::shared_ptr<GaussianFactor> hessianFactor1 = smartFactor1->linearize(
values);
boost::shared_ptr<GaussianFactor> hessianFactor2 = smartFactor2->linearize(
values);
boost::shared_ptr<GaussianFactor> hessianFactor3 = smartFactor3->linearize(
values);
Matrix CumulativeInformation = hessianFactor1->information()
+ hessianFactor2->information() + hessianFactor3->information();
boost::shared_ptr<GaussianFactorGraph> GaussianGraph = graph.linearize(
values);
Matrix GraphInformation = GaussianGraph->hessian().first;
// Check Hessian
EXPECT(assert_equal(GraphInformation, CumulativeInformation, 1e-8));
Matrix AugInformationMatrix = hessianFactor1->augmentedInformation()
+ hessianFactor2->augmentedInformation()
+ hessianFactor3->augmentedInformation();
// Check Information vector
Vector InfoVector = AugInformationMatrix.block(0, 18, 18, 1); // 18x18 Hessian + information vector
// Check Hessian
EXPECT(assert_equal(InfoVector, GaussianGraph->hessian().second, 1e-8));
}
//
///* *************************************************************************/
//TEST( SmartStereoProjectionPoseFactor, 3poses_2land_rotation_only_smart_projection_factor ){
//
// vector<Key> views;
// views.push_back(x1);
// views.push_back(x2);
// views.push_back(x3);
//
// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
// Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), Point3(0,0,1));
// StereoCamera cam1(pose1, K2);
//
// // create second camera 1 meter to the right of first camera
// Pose3 pose2 = pose1 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
// StereoCamera cam2(pose2, K2);
//
// // create third camera 1 meter above the first camera
// Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
// StereoCamera cam3(pose3, K2);
//
// // three landmarks ~5 meters infront of camera
// Point3 landmark1(5, 0.5, 1.2);
// Point3 landmark2(5, -0.5, 1.2);
//
// vector<StereoPoint2> measurements_cam1, measurements_cam2, measurements_cam3;
//
// // 1. Project three landmarks into three cameras and triangulate
// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
//
// double rankTol = 50;
// SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor(rankTol, linThreshold, manageDegeneracy));
// smartFactor1->add(measurements_cam1, views, model, K2);
//
// SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(rankTol, linThreshold, manageDegeneracy));
// smartFactor2->add(measurements_cam2, views, model, K2);
//
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
// const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3, 0.10);
// Point3 positionPrior = Point3(0,0,1);
//
// NonlinearFactorGraph graph;
// graph.push_back(smartFactor1);
// graph.push_back(smartFactor2);
// graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
// graph.push_back(PoseTranslationPrior<Pose3>(x2, positionPrior, noisePriorTranslation));
// graph.push_back(PoseTranslationPrior<Pose3>(x3, positionPrior, noisePriorTranslation));
//
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.1,0.1,0.1)); // smaller noise
// Values values;
// values.insert(x1, pose1);
// values.insert(x2, pose2*noise_pose);
// // initialize third pose with some noise, we expect it to move back to original pose3
// values.insert(x3, pose3*noise_pose*noise_pose);
//
// Values result;
// gttic_(SmartStereoProjectionPoseFactor);
// LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
// result = optimizer.optimize();
// gttoc_(SmartStereoProjectionPoseFactor);
// tictoc_finishedIteration_();
//
// // result.print("results of 3 camera, 3 landmark optimization \n");
// // EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
//}
//
///* *************************************************************************/
//TEST( SmartStereoProjectionPoseFactor, 3poses_rotation_only_smart_projection_factor ){
//
// vector<Key> views;
// views.push_back(x1);
// views.push_back(x2);
// views.push_back(x3);
//
// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
// Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), Point3(0,0,1));
// StereoCamera cam1(pose1, K);
//
// // create second camera 1 meter to the right of first camera
// Pose3 pose2 = pose1 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
// StereoCamera cam2(pose2, K);
//
// // create third camera 1 meter above the first camera
// Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
// StereoCamera cam3(pose3, K);
//
// // three landmarks ~5 meters infront of camera
// Point3 landmark1(5, 0.5, 1.2);
// Point3 landmark2(5, -0.5, 1.2);
// Point3 landmark3(3, 0, 3.0);
//
// vector<StereoPoint2> measurements_cam1, measurements_cam2, measurements_cam3;
//
// // 1. Project three landmarks into three cameras and triangulate
// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
//
// double rankTol = 10;
//
// SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor(rankTol, linThreshold, manageDegeneracy));
// smartFactor1->add(measurements_cam1, views, model, K);
//
// SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(rankTol, linThreshold, manageDegeneracy));
// smartFactor2->add(measurements_cam2, views, model, K);
//
// SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(rankTol, linThreshold, manageDegeneracy));
// smartFactor3->add(measurements_cam3, views, model, K);
//
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
// const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3, 0.10);
// Point3 positionPrior = Point3(0,0,1);
//
// NonlinearFactorGraph graph;
// graph.push_back(smartFactor1);
// graph.push_back(smartFactor2);
// graph.push_back(smartFactor3);
// graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
// graph.push_back(PoseTranslationPrior<Pose3>(x2, positionPrior, noisePriorTranslation));
// graph.push_back(PoseTranslationPrior<Pose3>(x3, positionPrior, noisePriorTranslation));
//
// // Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/100, 0., -M_PI/100), Point3(0.1,0.1,0.1)); // smaller noise
// Values values;
// values.insert(x1, pose1);
// values.insert(x2, pose2);
// // initialize third pose with some noise, we expect it to move back to original pose3
// values.insert(x3, pose3*noise_pose);
//
// Values result;
// gttic_(SmartStereoProjectionPoseFactor);
// LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
// result = optimizer.optimize();
// gttoc_(SmartStereoProjectionPoseFactor);
// tictoc_finishedIteration_();
//
// // result.print("results of 3 camera, 3 landmark optimization \n");
// // EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
//}
//
///* *************************************************************************/
//TEST( SmartStereoProjectionPoseFactor, Hessian ){
//
// vector<Key> views;
// views.push_back(x1);
// views.push_back(x2);
//
// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
// Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), Point3(0,0,1));
// StereoCamera cam1(pose1, K2);
//
// // create second camera 1 meter to the right of first camera
// Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
// StereoCamera cam2(pose2, K2);
//
// // three landmarks ~5 meters infront of camera
// Point3 landmark1(5, 0.5, 1.2);
//
// // 1. Project three landmarks into three cameras and triangulate
// StereoPoint2 cam1_uv1 = cam1.project(landmark1);
// StereoPoint2 cam2_uv1 = cam2.project(landmark1);
// vector<StereoPoint2> measurements_cam1;
// measurements_cam1.push_back(cam1_uv1);
// measurements_cam1.push_back(cam2_uv1);
//
// SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor());
// smartFactor1->add(measurements_cam1,views, model, K2);
//
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3));
// Values values;
// values.insert(x1, pose1);
// values.insert(x2, pose2);
//
// boost::shared_ptr<GaussianFactor> hessianFactor = smartFactor1->linearize(values);
//
// // compute triangulation from linearization point
// // compute reprojection errors (sum squared)
// // compare with hessianFactor.info(): the bottom right element is the squared sum of the reprojection errors (normalized by the covariance)
// // check that it is correctly scaled when using noiseProjection = [1/4 0; 0 1/4]
//}
//
/* *************************************************************************/
TEST( SmartStereoProjectionPoseFactor, HessianWithRotation ) {
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
StereoCamera cam1(pose1, K);
// create second camera 1 meter to the right of first camera
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
StereoCamera cam2(pose2, K);
// create third camera 1 meter above the first camera
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
StereoCamera cam3(pose3, K);
Point3 landmark1(5, 0.5, 1.2);
vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark1);
SmartStereoProjectionPoseFactor::shared_ptr smartFactorInstance(new SmartStereoProjectionPoseFactor(model));
smartFactorInstance->add(measurements_cam1, views, K);
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
values.insert(x3, pose3);
boost::shared_ptr<GaussianFactor> hessianFactor =
smartFactorInstance->linearize(values);
// hessianFactor->print("Hessian factor \n");
Pose3 poseDrift = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
Values rotValues;
rotValues.insert(x1, poseDrift.compose(pose1));
rotValues.insert(x2, poseDrift.compose(pose2));
rotValues.insert(x3, poseDrift.compose(pose3));
boost::shared_ptr<GaussianFactor> hessianFactorRot =
smartFactorInstance->linearize(rotValues);
// hessianFactorRot->print("Hessian factor \n");
// Hessian is invariant to rotations in the nondegenerate case
EXPECT(
assert_equal(hessianFactor->information(),
hessianFactorRot->information(), 1e-7));
Pose3 poseDrift2 = Pose3(Rot3::Ypr(-M_PI / 2, -M_PI / 3, -M_PI / 2),
Point3(10, -4, 5));
Values tranValues;
tranValues.insert(x1, poseDrift2.compose(pose1));
tranValues.insert(x2, poseDrift2.compose(pose2));
tranValues.insert(x3, poseDrift2.compose(pose3));
boost::shared_ptr<GaussianFactor> hessianFactorRotTran =
smartFactorInstance->linearize(tranValues);
// Hessian is invariant to rotations and translations in the nondegenerate case
EXPECT(
assert_equal(hessianFactor->information(),
hessianFactorRotTran->information(), 1e-6));
}
/* *************************************************************************/
TEST( SmartStereoProjectionPoseFactor, HessianWithRotationDegenerate ) {
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
StereoCamera cam1(pose1, K2);
// Second and third cameras in same place, which is a degenerate configuration
Pose3 pose2 = pose1;
Pose3 pose3 = pose1;
StereoCamera cam2(pose2, K2);
StereoCamera cam3(pose3, K2);
Point3 landmark1(5, 0.5, 1.2);
vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark1);
SmartStereoProjectionPoseFactor::shared_ptr smartFactor(new SmartStereoProjectionPoseFactor(model));
smartFactor->add(measurements_cam1, views, K2);
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
values.insert(x3, pose3);
boost::shared_ptr<GaussianFactor> hessianFactor = smartFactor->linearize(
values);
Pose3 poseDrift = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
Values rotValues;
rotValues.insert(x1, poseDrift.compose(pose1));
rotValues.insert(x2, poseDrift.compose(pose2));
rotValues.insert(x3, poseDrift.compose(pose3));
boost::shared_ptr<GaussianFactor> hessianFactorRot = smartFactor->linearize(
rotValues);
// Hessian is invariant to rotations in the nondegenerate case
EXPECT(
assert_equal(hessianFactor->information(),
hessianFactorRot->information(), 1e-6));
Pose3 poseDrift2 = Pose3(Rot3::Ypr(-M_PI / 2, -M_PI / 3, -M_PI / 2),
Point3(10, -4, 5));
Values tranValues;
tranValues.insert(x1, poseDrift2.compose(pose1));
tranValues.insert(x2, poseDrift2.compose(pose2));
tranValues.insert(x3, poseDrift2.compose(pose3));
boost::shared_ptr<GaussianFactor> hessianFactorRotTran =
smartFactor->linearize(tranValues);
// Hessian is invariant to rotations and translations in the nondegenerate case
EXPECT(
assert_equal(hessianFactor->information(),
hessianFactorRotTran->information(), 1e-6));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */