gtsam/gtsam/linear/GaussianFactor.h

166 lines
5.9 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file GaussianFactor.h
* @brief A factor with a quadratic error function - a Gaussian
* @brief GaussianFactor
* @author Richard Roberts, Christian Potthast
*/
// \callgraph
#pragma once
#include <gtsam/inference/Factor.h>
#include <gtsam/base/Matrix.h>
#include <gtsam/base/Testable.h>
namespace gtsam {
// Forward declarations
class VectorValues;
class Scatter;
class SymmetricBlockMatrix;
/**
* An abstract virtual base class for JacobianFactor and HessianFactor. A GaussianFactor has a
* quadratic error function. GaussianFactor is non-mutable (all methods const!). The factor value
* is exp(-0.5*||Ax-b||^2) */
class GTSAM_EXPORT GaussianFactor : public Factor
{
public:
typedef GaussianFactor This; ///< This class
typedef boost::shared_ptr<This> shared_ptr; ///< shared_ptr to this class
typedef Factor Base; ///< Our base class
/** Default constructor creates empty factor */
GaussianFactor() {}
/** Construct from container of keys. This constructor is used internally from derived factor
* constructors, either from a container of keys or from a boost::assign::list_of. */
template<typename CONTAINER>
GaussianFactor(const CONTAINER& keys) : Base(keys) {}
/** Destructor */
virtual ~GaussianFactor() {}
// Implementing Testable interface
virtual void print(const std::string& s = "",
const KeyFormatter& formatter = DefaultKeyFormatter) const = 0;
/** Equals for testable */
virtual bool equals(const GaussianFactor& lf, double tol = 1e-9) const = 0;
/** Print for testable */
virtual double error(const VectorValues& c) const = 0; /** 0.5*(A*x-b)'*D*(A*x-b) */
/** Return the dimension of the variable pointed to by the given key iterator */
virtual DenseIndex getDim(const_iterator variable) const = 0;
/**
* Return a dense \f$ [ \;A\;b\; ] \in \mathbb{R}^{m \times n+1} \f$
* Jacobian matrix, augmented with b with the noise models baked
* into A and b. The negative log-likelihood is
* \f$ \frac{1}{2} \Vert Ax-b \Vert^2 \f$. See also
* GaussianFactorGraph::jacobian and GaussianFactorGraph::sparseJacobian.
*/
virtual Matrix augmentedJacobian() const = 0;
/**
* Return the dense Jacobian \f$ A \f$ and right-hand-side \f$ b \f$,
* with the noise models baked into A and b. The negative log-likelihood
* is \f$ \frac{1}{2} \Vert Ax-b \Vert^2 \f$. See also
* GaussianFactorGraph::augmentedJacobian and
* GaussianFactorGraph::sparseJacobian.
*/
virtual std::pair<Matrix,Vector> jacobian() const = 0;
/** Return the augmented information matrix represented by this GaussianFactor.
* The augmented information matrix contains the information matrix with an
* additional column holding the information vector, and an additional row
* holding the transpose of the information vector. The lower-right entry
* contains the constant error term (when \f$ \delta x = 0 \f$). The
* augmented information matrix is described in more detail in HessianFactor,
* which in fact stores an augmented information matrix.
*/
virtual Matrix augmentedInformation() const = 0;
/** Return the non-augmented information matrix represented by this
* GaussianFactor.
*/
virtual Matrix information() const = 0;
/// Return the diagonal of the Hessian for this factor
virtual VectorValues hessianDiagonal() const = 0;
/// Raw memory access version of hessianDiagonal
virtual void hessianDiagonal(double* d) const = 0;
/// Return the block diagonal of the Hessian for this factor
virtual std::map<Key,Matrix> hessianBlockDiagonal() const = 0;
/** Clone a factor (make a deep copy) */
virtual GaussianFactor::shared_ptr clone() const = 0;
/** Test whether the factor is empty */
virtual bool empty() const = 0;
/**
* Construct the corresponding anti-factor to negate information
* stored stored in this factor.
* @return a HessianFactor with negated Hessian matrices
*/
virtual GaussianFactor::shared_ptr negate() const = 0;
/** Update an information matrix by adding the information corresponding to this factor
* (used internally during elimination).
* @param scatter A mapping from variable index to slot index in this HessianFactor
* @param info The information matrix to be updated
*/
virtual void updateHessian(const KeyVector& keys,
SymmetricBlockMatrix* info) const = 0;
/// y += alpha * A'*A*x
virtual void multiplyHessianAdd(double alpha, const VectorValues& x, VectorValues& y) const = 0;
/// A'*b for Jacobian, eta for Hessian
virtual VectorValues gradientAtZero() const = 0;
/// Raw memory access version of gradientAtZero
virtual void gradientAtZero(double* d) const = 0;
/// Gradient wrt a key at any values
virtual Vector gradient(Key key, const VectorValues& x) const = 0;
// Determine position of a given key
template <typename CONTAINER>
static DenseIndex Slot(const CONTAINER& keys, Key key) {
return std::find(keys.begin(), keys.end(), key) - keys.begin();
}
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
}
}; // GaussianFactor
/// traits
template<>
struct traits<GaussianFactor> : public Testable<GaussianFactor> {
};
} // \ namespace gtsam