97 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			97 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file    SelfCalibrationExample.cpp
 | 
						|
 * @brief   Based on VisualSLAMExample, but with unknown (yet fixed) calibration.
 | 
						|
 * @author  Frank Dellaert
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * See the detailed documentation in Visual SLAM.
 | 
						|
 * The only documentation below with deal with the self-calibration.
 | 
						|
 */
 | 
						|
 | 
						|
// For loading the data
 | 
						|
#include "SFMdata.h"
 | 
						|
 | 
						|
// Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
 | 
						|
#include <gtsam/geometry/Point2.h>
 | 
						|
 | 
						|
// Inference and optimization
 | 
						|
#include <gtsam/inference/Symbol.h>
 | 
						|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | 
						|
#include <gtsam/nonlinear/DoglegOptimizer.h>
 | 
						|
#include <gtsam/nonlinear/Values.h>
 | 
						|
 | 
						|
// SFM-specific factors
 | 
						|
#include <gtsam/slam/PriorFactor.h>
 | 
						|
#include <gtsam/slam/GeneralSFMFactor.h> // does calibration !
 | 
						|
 | 
						|
// Standard headers
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main(int argc, char* argv[]) {
 | 
						|
 | 
						|
  // Create the set of ground-truth
 | 
						|
  vector<Point3> points = createPoints();
 | 
						|
  vector<Pose3> poses = createPoses();
 | 
						|
 | 
						|
  // Create the factor graph
 | 
						|
  NonlinearFactorGraph graph;
 | 
						|
 | 
						|
  // Add a prior on pose x1.
 | 
						|
  noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1))); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
 | 
						|
  graph.push_back(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise));
 | 
						|
 | 
						|
  // Simulated measurements from each camera pose, adding them to the factor graph
 | 
						|
  Cal3_S2 K(50.0, 50.0, 0.0, 50.0, 50.0);
 | 
						|
  noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0);
 | 
						|
  for (size_t i = 0; i < poses.size(); ++i) {
 | 
						|
    for (size_t j = 0; j < points.size(); ++j) {
 | 
						|
      SimpleCamera camera(poses[i], K);
 | 
						|
      Point2 measurement = camera.project(points[j]);
 | 
						|
      // The only real difference with the Visual SLAM example is that here we use a
 | 
						|
      // different factor type, that also calculates the Jacobian with respect to calibration
 | 
						|
      graph.push_back(GeneralSFMFactor2<Cal3_S2>(measurement, measurementNoise, Symbol('x', i), Symbol('l', j), Symbol('K', 0)));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Add a prior on the position of the first landmark.
 | 
						|
  noiseModel::Isotropic::shared_ptr pointNoise = noiseModel::Isotropic::Sigma(3, 0.1);
 | 
						|
  graph.push_back(PriorFactor<Point3>(Symbol('l', 0), points[0], pointNoise)); // add directly to graph
 | 
						|
 | 
						|
  // Add a prior on the calibration.
 | 
						|
  noiseModel::Diagonal::shared_ptr calNoise = noiseModel::Diagonal::Sigmas((Vector(5) << 500, 500, 0.1, 100, 100));
 | 
						|
  graph.push_back(PriorFactor<Cal3_S2>(Symbol('K', 0), K, calNoise));
 | 
						|
 | 
						|
  // Create the initial estimate to the solution
 | 
						|
  // now including an estimate on the camera calibration parameters
 | 
						|
  Values initialEstimate;
 | 
						|
  initialEstimate.insert(Symbol('K', 0), Cal3_S2(60.0, 60.0, 0.0, 45.0, 45.0));
 | 
						|
  for (size_t i = 0; i < poses.size(); ++i)
 | 
						|
    initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
 | 
						|
  for (size_t j = 0; j < points.size(); ++j)
 | 
						|
    initialEstimate.insert(Symbol('l', j), points[j].compose(Point3(-0.25, 0.20, 0.15)));
 | 
						|
 | 
						|
  /* Optimize the graph and print results */
 | 
						|
  Values result = DoglegOptimizer(graph, initialEstimate).optimize();
 | 
						|
  result.print("Final results:\n");
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
/* ************************************************************************* */
 | 
						|
 |