226 lines
7.7 KiB
C++
226 lines
7.7 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testSubgraphConditioner.cpp
|
|
* @brief Unit tests for SubgraphPreconditioner
|
|
* @author Frank Dellaert
|
|
**/
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
#if 0
|
|
|
|
#include <tests/smallExample.h>
|
|
#include <gtsam/inference/Symbol.h>
|
|
#include <gtsam/linear/iterative.h>
|
|
#include <gtsam/linear/GaussianFactorGraph.h>
|
|
#include <gtsam/linear/SubgraphPreconditioner.h>
|
|
#include <gtsam/inference/Ordering.h>
|
|
#include <gtsam/base/numericalDerivative.h>
|
|
|
|
#include <boost/foreach.hpp>
|
|
#include <boost/tuple/tuple.hpp>
|
|
#include <boost/assign/std/list.hpp>
|
|
using namespace boost::assign;
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
using namespace example;
|
|
|
|
// define keys
|
|
// Create key for simulated planar graph
|
|
Symbol key(int x, int y) {
|
|
return symbol_shorthand::X(1000*x+y);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SubgraphPreconditioner, planarOrdering ) {
|
|
// Check canonical ordering
|
|
Ordering expected, ordering = planarOrdering(3);
|
|
expected +=
|
|
key(3, 3), key(2, 3), key(1, 3),
|
|
key(3, 2), key(2, 2), key(1, 2),
|
|
key(3, 1), key(2, 1), key(1, 1);
|
|
CHECK(assert_equal(expected,ordering));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/** unnormalized error */
|
|
static double error(const GaussianFactorGraph& fg, const VectorValues& x) {
|
|
double total_error = 0.;
|
|
BOOST_FOREACH(const GaussianFactor::shared_ptr& factor, fg)
|
|
total_error += factor->error(x);
|
|
return total_error;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SubgraphPreconditioner, planarGraph )
|
|
{
|
|
// Check planar graph construction
|
|
GaussianFactorGraph A;
|
|
VectorValues xtrue;
|
|
boost::tie(A, xtrue) = planarGraph(3);
|
|
LONGS_EQUAL(13,A.size());
|
|
LONGS_EQUAL(9,xtrue.size());
|
|
DOUBLES_EQUAL(0,error(A,xtrue),1e-9); // check zero error for xtrue
|
|
|
|
// Check that xtrue is optimal
|
|
GaussianBayesNet::shared_ptr R1 = GaussianSequentialSolver(A).eliminate();
|
|
VectorValues actual = optimize(*R1);
|
|
CHECK(assert_equal(xtrue,actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SubgraphPreconditioner, splitOffPlanarTree )
|
|
{
|
|
// Build a planar graph
|
|
GaussianFactorGraph A;
|
|
VectorValues xtrue;
|
|
boost::tie(A, xtrue) = planarGraph(3);
|
|
|
|
// Get the spanning tree and constraints, and check their sizes
|
|
GaussianFactorGraph T, C;
|
|
boost::tie(T, C) = splitOffPlanarTree(3, A);
|
|
LONGS_EQUAL(9,T.size());
|
|
LONGS_EQUAL(4,C.size());
|
|
|
|
// Check that the tree can be solved to give the ground xtrue
|
|
GaussianBayesNet::shared_ptr R1 = GaussianSequentialSolver(T).eliminate();
|
|
VectorValues xbar = optimize(*R1);
|
|
CHECK(assert_equal(xtrue,xbar));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
|
|
TEST( SubgraphPreconditioner, system )
|
|
{
|
|
// Build a planar graph
|
|
GaussianFactorGraph Ab;
|
|
VectorValues xtrue;
|
|
size_t N = 3;
|
|
boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
|
|
|
|
// Get the spanning tree and corresponding ordering
|
|
GaussianFactorGraph Ab1_, Ab2_; // A1*x-b1 and A2*x-b2
|
|
boost::tie(Ab1_, Ab2_) = splitOffPlanarTree(N, Ab);
|
|
SubgraphPreconditioner::sharedFG Ab1(new GaussianFactorGraph(Ab1_));
|
|
SubgraphPreconditioner::sharedFG Ab2(new GaussianFactorGraph(Ab2_));
|
|
|
|
// Eliminate the spanning tree to build a prior
|
|
SubgraphPreconditioner::sharedBayesNet Rc1 = GaussianSequentialSolver(Ab1_).eliminate(); // R1*x-c1
|
|
VectorValues xbar = optimize(*Rc1); // xbar = inv(R1)*c1
|
|
|
|
// Create Subgraph-preconditioned system
|
|
VectorValues::shared_ptr xbarShared(new VectorValues(xbar)); // TODO: horrible
|
|
SubgraphPreconditioner system(Ab2, Rc1, xbarShared);
|
|
|
|
// Create zero config
|
|
VectorValues zeros = VectorValues::Zero(xbar);
|
|
|
|
// Set up y0 as all zeros
|
|
VectorValues y0 = zeros;
|
|
|
|
// y1 = perturbed y0
|
|
VectorValues y1 = zeros;
|
|
y1[1] = (Vector(2) << 1.0, -1.0);
|
|
|
|
// Check corresponding x values
|
|
VectorValues expected_x1 = xtrue, x1 = system.x(y1);
|
|
expected_x1[1] = (Vector(2) << 2.01, 2.99);
|
|
expected_x1[0] = (Vector(2) << 3.01, 2.99);
|
|
CHECK(assert_equal(xtrue, system.x(y0)));
|
|
CHECK(assert_equal(expected_x1,system.x(y1)));
|
|
|
|
// Check errors
|
|
DOUBLES_EQUAL(0,error(Ab,xtrue),1e-9);
|
|
DOUBLES_EQUAL(3,error(Ab,x1),1e-9);
|
|
DOUBLES_EQUAL(0,error(system,y0),1e-9);
|
|
DOUBLES_EQUAL(3,error(system,y1),1e-9);
|
|
|
|
// Test gradient in x
|
|
VectorValues expected_gx0 = zeros;
|
|
VectorValues expected_gx1 = zeros;
|
|
CHECK(assert_equal(expected_gx0,gradient(Ab,xtrue)));
|
|
expected_gx1[2] = (Vector(2) << -100., 100.);
|
|
expected_gx1[4] = (Vector(2) << -100., 100.);
|
|
expected_gx1[1] = (Vector(2) << 200., -200.);
|
|
expected_gx1[3] = (Vector(2) << -100., 100.);
|
|
expected_gx1[0] = (Vector(2) << 100., -100.);
|
|
CHECK(assert_equal(expected_gx1,gradient(Ab,x1)));
|
|
|
|
// Test gradient in y
|
|
VectorValues expected_gy0 = zeros;
|
|
VectorValues expected_gy1 = zeros;
|
|
expected_gy1[2] = (Vector(2) << 2., -2.);
|
|
expected_gy1[4] = (Vector(2) << -2., 2.);
|
|
expected_gy1[1] = (Vector(2) << 3., -3.);
|
|
expected_gy1[3] = (Vector(2) << -1., 1.);
|
|
expected_gy1[0] = (Vector(2) << 1., -1.);
|
|
CHECK(assert_equal(expected_gy0,gradient(system,y0)));
|
|
CHECK(assert_equal(expected_gy1,gradient(system,y1)));
|
|
|
|
// Check it numerically for good measure
|
|
// TODO use boost::bind(&SubgraphPreconditioner::error,&system,_1)
|
|
// Vector numerical_g1 = numericalGradient<VectorValues> (error, y1, 0.001);
|
|
// Vector expected_g1 = (Vector(18) << 0., 0., 0., 0., 2., -2., 0., 0., -2., 2.,
|
|
// 3., -3., 0., 0., -1., 1., 1., -1.);
|
|
// CHECK(assert_equal(expected_g1,numerical_g1));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SubgraphPreconditioner, conjugateGradients )
|
|
{
|
|
// Build a planar graph
|
|
GaussianFactorGraph Ab;
|
|
VectorValues xtrue;
|
|
size_t N = 3;
|
|
boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
|
|
|
|
// Get the spanning tree and corresponding ordering
|
|
GaussianFactorGraph Ab1_, Ab2_; // A1*x-b1 and A2*x-b2
|
|
boost::tie(Ab1_, Ab2_) = splitOffPlanarTree(N, Ab);
|
|
SubgraphPreconditioner::sharedFG Ab1(new GaussianFactorGraph(Ab1_));
|
|
SubgraphPreconditioner::sharedFG Ab2(new GaussianFactorGraph(Ab2_));
|
|
|
|
// Eliminate the spanning tree to build a prior
|
|
Ordering ordering = planarOrdering(N);
|
|
SubgraphPreconditioner::sharedBayesNet Rc1 = GaussianSequentialSolver(Ab1_).eliminate(); // R1*x-c1
|
|
VectorValues xbar = optimize(*Rc1); // xbar = inv(R1)*c1
|
|
|
|
// Create Subgraph-preconditioned system
|
|
VectorValues::shared_ptr xbarShared(new VectorValues(xbar)); // TODO: horrible
|
|
SubgraphPreconditioner system(Ab2, Rc1, xbarShared);
|
|
|
|
// Create zero config y0 and perturbed config y1
|
|
VectorValues y0 = VectorValues::Zero(xbar);
|
|
|
|
VectorValues y1 = y0;
|
|
y1[1] = (Vector(2) << 1.0, -1.0);
|
|
VectorValues x1 = system.x(y1);
|
|
|
|
// Solve for the remaining constraints using PCG
|
|
ConjugateGradientParameters parameters;
|
|
VectorValues actual = conjugateGradients<SubgraphPreconditioner,
|
|
VectorValues, Errors>(system, y1, parameters);
|
|
CHECK(assert_equal(y0,actual));
|
|
|
|
// Compare with non preconditioned version:
|
|
VectorValues actual2 = conjugateGradientDescent(Ab, x1, parameters);
|
|
CHECK(assert_equal(xtrue,actual2,1e-4));
|
|
}
|
|
|
|
#endif
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
|
/* ************************************************************************* */
|