579 lines
19 KiB
C++
579 lines
19 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* @file testNonlinearEquality.cpp
|
|
* @author Alex Cunningham
|
|
*/
|
|
|
|
#include <tests/simulated2DConstraints.h>
|
|
|
|
#include <gtsam/slam/PriorFactor.h>
|
|
#include <gtsam/slam/ProjectionFactor.h>
|
|
#include <gtsam/inference/Symbol.h>
|
|
#include <gtsam/nonlinear/NonlinearEquality.h>
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
|
#include <gtsam/geometry/Point2.h>
|
|
#include <gtsam/geometry/Pose2.h>
|
|
#include <gtsam/geometry/Point3.h>
|
|
#include <gtsam/geometry/Pose3.h>
|
|
#include <gtsam/geometry/Cal3_S2.h>
|
|
#include <gtsam/geometry/SimpleCamera.h>
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
namespace eq2D = simulated2D::equality_constraints;
|
|
|
|
static const double tol = 1e-5;
|
|
|
|
typedef PriorFactor<Pose2> PosePrior;
|
|
typedef NonlinearEquality<Pose2> PoseNLE;
|
|
typedef boost::shared_ptr<PoseNLE> shared_poseNLE;
|
|
|
|
static Symbol key('x',1);
|
|
|
|
/* ************************************************************************* */
|
|
TEST ( NonlinearEquality, linearization ) {
|
|
Pose2 value = Pose2(2.1, 1.0, 2.0);
|
|
Values linearize;
|
|
linearize.insert(key, value);
|
|
|
|
// create a nonlinear equality constraint
|
|
shared_poseNLE nle(new PoseNLE(key, value));
|
|
|
|
// check linearize
|
|
SharedDiagonal constraintModel = noiseModel::Constrained::All(3);
|
|
JacobianFactor expLF(key, eye(3), zero(3), constraintModel);
|
|
GaussianFactor::shared_ptr actualLF = nle->linearize(linearize);
|
|
EXPECT(assert_equal((const GaussianFactor&)expLF, *actualLF));
|
|
}
|
|
|
|
/* ********************************************************************** */
|
|
TEST ( NonlinearEquality, linearization_pose ) {
|
|
|
|
Symbol key('x',1);
|
|
Pose2 value;
|
|
Values config;
|
|
config.insert(key, value);
|
|
|
|
// create a nonlinear equality constraint
|
|
shared_poseNLE nle(new PoseNLE(key, value));
|
|
|
|
GaussianFactor::shared_ptr actualLF = nle->linearize(config);
|
|
EXPECT(true);
|
|
}
|
|
|
|
/* ********************************************************************** */
|
|
TEST ( NonlinearEquality, linearization_fail ) {
|
|
Pose2 value = Pose2(2.1, 1.0, 2.0);
|
|
Pose2 wrong = Pose2(2.1, 3.0, 4.0);
|
|
Values bad_linearize;
|
|
bad_linearize.insert(key, wrong);
|
|
|
|
// create a nonlinear equality constraint
|
|
shared_poseNLE nle(new PoseNLE(key, value));
|
|
|
|
// check linearize to ensure that it fails for bad linearization points
|
|
CHECK_EXCEPTION(nle->linearize(bad_linearize), std::invalid_argument);
|
|
}
|
|
|
|
/* ********************************************************************** */
|
|
TEST ( NonlinearEquality, linearization_fail_pose ) {
|
|
|
|
Symbol key('x',1);
|
|
Pose2 value(2.0, 1.0, 2.0),
|
|
wrong(2.0, 3.0, 4.0);
|
|
Values bad_linearize;
|
|
bad_linearize.insert(key, wrong);
|
|
|
|
// create a nonlinear equality constraint
|
|
shared_poseNLE nle(new PoseNLE(key, value));
|
|
|
|
// check linearize to ensure that it fails for bad linearization points
|
|
CHECK_EXCEPTION(nle->linearize(bad_linearize), std::invalid_argument);
|
|
}
|
|
|
|
/* ********************************************************************** */
|
|
TEST ( NonlinearEquality, linearization_fail_pose_origin ) {
|
|
|
|
Symbol key('x',1);
|
|
Pose2 value,
|
|
wrong(2.0, 3.0, 4.0);
|
|
Values bad_linearize;
|
|
bad_linearize.insert(key, wrong);
|
|
|
|
// create a nonlinear equality constraint
|
|
shared_poseNLE nle(new PoseNLE(key, value));
|
|
|
|
// check linearize to ensure that it fails for bad linearization points
|
|
CHECK_EXCEPTION(nle->linearize(bad_linearize), std::invalid_argument);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST ( NonlinearEquality, error ) {
|
|
Pose2 value = Pose2(2.1, 1.0, 2.0);
|
|
Pose2 wrong = Pose2(2.1, 3.0, 4.0);
|
|
Values feasible, bad_linearize;
|
|
feasible.insert(key, value);
|
|
bad_linearize.insert(key, wrong);
|
|
|
|
// create a nonlinear equality constraint
|
|
shared_poseNLE nle(new PoseNLE(key, value));
|
|
|
|
// check error function outputs
|
|
Vector actual = nle->unwhitenedError(feasible);
|
|
EXPECT(assert_equal(actual, zero(3)));
|
|
|
|
actual = nle->unwhitenedError(bad_linearize);
|
|
EXPECT(assert_equal(actual, repeat(3, std::numeric_limits<double>::infinity())));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST ( NonlinearEquality, equals ) {
|
|
Pose2 value1 = Pose2(2.1, 1.0, 2.0);
|
|
Pose2 value2 = Pose2(2.1, 3.0, 4.0);
|
|
|
|
// create some constraints to compare
|
|
shared_poseNLE nle1(new PoseNLE(key, value1));
|
|
shared_poseNLE nle2(new PoseNLE(key, value1));
|
|
shared_poseNLE nle3(new PoseNLE(key, value2));
|
|
|
|
// verify
|
|
EXPECT(nle1->equals(*nle2)); // basic equality = true
|
|
EXPECT(nle2->equals(*nle1)); // test symmetry of equals()
|
|
EXPECT(!nle1->equals(*nle3)); // test config
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST ( NonlinearEquality, allow_error_pose ) {
|
|
Symbol key1('x',1);
|
|
Pose2 feasible1(1.0, 2.0, 3.0);
|
|
double error_gain = 500.0;
|
|
PoseNLE nle(key1, feasible1, error_gain);
|
|
|
|
// the unwhitened error should provide logmap to the feasible state
|
|
Pose2 badPoint1(0.0, 2.0, 3.0);
|
|
Vector actVec = nle.evaluateError(badPoint1);
|
|
Vector expVec = (Vector(3) << -0.989992, -0.14112, 0.0);
|
|
EXPECT(assert_equal(expVec, actVec, 1e-5));
|
|
|
|
// the actual error should have a gain on it
|
|
Values config;
|
|
config.insert(key1, badPoint1);
|
|
double actError = nle.error(config);
|
|
DOUBLES_EQUAL(500.0, actError, 1e-9);
|
|
|
|
// check linearization
|
|
GaussianFactor::shared_ptr actLinFactor = nle.linearize(config);
|
|
Matrix A1 = eye(3,3);
|
|
Vector b = expVec;
|
|
SharedDiagonal model = noiseModel::Constrained::All(3);
|
|
GaussianFactor::shared_ptr expLinFactor(new JacobianFactor(key1, A1, b, model));
|
|
EXPECT(assert_equal(*expLinFactor, *actLinFactor, 1e-5));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST ( NonlinearEquality, allow_error_optimize ) {
|
|
Symbol key1('x',1);
|
|
Pose2 feasible1(1.0, 2.0, 3.0);
|
|
double error_gain = 500.0;
|
|
PoseNLE nle(key1, feasible1, error_gain);
|
|
|
|
// add to a graph
|
|
NonlinearFactorGraph graph;
|
|
graph += nle;
|
|
|
|
// initialize away from the ideal
|
|
Pose2 initPose(0.0, 2.0, 3.0);
|
|
Values init;
|
|
init.insert(key1, initPose);
|
|
|
|
// optimize
|
|
Ordering ordering;
|
|
ordering.push_back(key1);
|
|
Values result = LevenbergMarquardtOptimizer(graph, init, ordering).optimize();
|
|
|
|
// verify
|
|
Values expected;
|
|
expected.insert(key1, feasible1);
|
|
EXPECT(assert_equal(expected, result));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST ( NonlinearEquality, allow_error_optimize_with_factors ) {
|
|
|
|
// create a hard constraint
|
|
Symbol key1('x',1);
|
|
Pose2 feasible1(1.0, 2.0, 3.0);
|
|
|
|
// initialize away from the ideal
|
|
Values init;
|
|
Pose2 initPose(0.0, 2.0, 3.0);
|
|
init.insert(key1, initPose);
|
|
|
|
double error_gain = 500.0;
|
|
PoseNLE nle(key1, feasible1, error_gain);
|
|
|
|
// create a soft prior that conflicts
|
|
PosePrior prior(key1, initPose, noiseModel::Isotropic::Sigma(3, 0.1));
|
|
|
|
// add to a graph
|
|
NonlinearFactorGraph graph;
|
|
graph += nle;
|
|
graph += prior;
|
|
|
|
// optimize
|
|
Ordering ordering;
|
|
ordering.push_back(key1);
|
|
Values actual = LevenbergMarquardtOptimizer(graph, init, ordering).optimize();
|
|
|
|
// verify
|
|
Values expected;
|
|
expected.insert(key1, feasible1);
|
|
EXPECT(assert_equal(expected, actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
static SharedDiagonal hard_model = noiseModel::Constrained::All(2);
|
|
static SharedDiagonal soft_model = noiseModel::Isotropic::Sigma(2, 1.0);
|
|
|
|
/* ************************************************************************* */
|
|
TEST( testNonlinearEqualityConstraint, unary_basics ) {
|
|
Point2 pt(1.0, 2.0);
|
|
Symbol key1('x',1);
|
|
double mu = 1000.0;
|
|
eq2D::UnaryEqualityConstraint constraint(pt, key, mu);
|
|
|
|
Values config1;
|
|
config1.insert(key, pt);
|
|
EXPECT(constraint.active(config1));
|
|
EXPECT(assert_equal(zero(2), constraint.evaluateError(pt), tol));
|
|
EXPECT(assert_equal(zero(2), constraint.unwhitenedError(config1), tol));
|
|
EXPECT_DOUBLES_EQUAL(0.0, constraint.error(config1), tol);
|
|
|
|
Values config2;
|
|
Point2 ptBad1(2.0, 2.0);
|
|
config2.insert(key, ptBad1);
|
|
EXPECT(constraint.active(config2));
|
|
EXPECT(assert_equal((Vector(2) << 1.0, 0.0), constraint.evaluateError(ptBad1), tol));
|
|
EXPECT(assert_equal((Vector(2) << 1.0, 0.0), constraint.unwhitenedError(config2), tol));
|
|
EXPECT_DOUBLES_EQUAL(500.0, constraint.error(config2), tol);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( testNonlinearEqualityConstraint, unary_linearization ) {
|
|
Point2 pt(1.0, 2.0);
|
|
Symbol key1('x',1);
|
|
double mu = 1000.0;
|
|
eq2D::UnaryEqualityConstraint constraint(pt, key, mu);
|
|
|
|
Values config1;
|
|
config1.insert(key, pt);
|
|
GaussianFactor::shared_ptr actual1 = constraint.linearize(config1);
|
|
GaussianFactor::shared_ptr expected1(new JacobianFactor(key, eye(2,2), zero(2), hard_model));
|
|
EXPECT(assert_equal(*expected1, *actual1, tol));
|
|
|
|
Values config2;
|
|
Point2 ptBad(2.0, 2.0);
|
|
config2.insert(key, ptBad);
|
|
GaussianFactor::shared_ptr actual2 = constraint.linearize(config2);
|
|
GaussianFactor::shared_ptr expected2(new JacobianFactor(key, eye(2,2), (Vector(2) <<-1.0,0.0), hard_model));
|
|
EXPECT(assert_equal(*expected2, *actual2, tol));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( testNonlinearEqualityConstraint, unary_simple_optimization ) {
|
|
// create a single-node graph with a soft and hard constraint to
|
|
// ensure that the hard constraint overrides the soft constraint
|
|
Point2 truth_pt(1.0, 2.0);
|
|
Symbol key('x',1);
|
|
double mu = 10.0;
|
|
eq2D::UnaryEqualityConstraint::shared_ptr constraint(
|
|
new eq2D::UnaryEqualityConstraint(truth_pt, key, mu));
|
|
|
|
Point2 badPt(100.0, -200.0);
|
|
simulated2D::Prior::shared_ptr factor(
|
|
new simulated2D::Prior(badPt, soft_model, key));
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(constraint);
|
|
graph.push_back(factor);
|
|
|
|
Values initValues;
|
|
initValues.insert(key, badPt);
|
|
|
|
// verify error values
|
|
EXPECT(constraint->active(initValues));
|
|
|
|
Values expected;
|
|
expected.insert(key, truth_pt);
|
|
EXPECT(constraint->active(expected));
|
|
EXPECT_DOUBLES_EQUAL(0.0, constraint->error(expected), tol);
|
|
|
|
Values actual = LevenbergMarquardtOptimizer(graph, initValues).optimize();
|
|
EXPECT(assert_equal(expected, actual, tol));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( testNonlinearEqualityConstraint, odo_basics ) {
|
|
Point2 x1(1.0, 2.0), x2(2.0, 3.0), odom(1.0, 1.0);
|
|
Symbol key1('x',1), key2('x',2);
|
|
double mu = 1000.0;
|
|
eq2D::OdoEqualityConstraint constraint(odom, key1, key2, mu);
|
|
|
|
Values config1;
|
|
config1.insert(key1, x1);
|
|
config1.insert(key2, x2);
|
|
EXPECT(constraint.active(config1));
|
|
EXPECT(assert_equal(zero(2), constraint.evaluateError(x1, x2), tol));
|
|
EXPECT(assert_equal(zero(2), constraint.unwhitenedError(config1), tol));
|
|
EXPECT_DOUBLES_EQUAL(0.0, constraint.error(config1), tol);
|
|
|
|
Values config2;
|
|
Point2 x1bad(2.0, 2.0);
|
|
Point2 x2bad(2.0, 2.0);
|
|
config2.insert(key1, x1bad);
|
|
config2.insert(key2, x2bad);
|
|
EXPECT(constraint.active(config2));
|
|
EXPECT(assert_equal((Vector(2) << -1.0, -1.0), constraint.evaluateError(x1bad, x2bad), tol));
|
|
EXPECT(assert_equal((Vector(2) << -1.0, -1.0), constraint.unwhitenedError(config2), tol));
|
|
EXPECT_DOUBLES_EQUAL(1000.0, constraint.error(config2), tol);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( testNonlinearEqualityConstraint, odo_linearization ) {
|
|
Point2 x1(1.0, 2.0), x2(2.0, 3.0), odom(1.0, 1.0);
|
|
Symbol key1('x',1), key2('x',2);
|
|
double mu = 1000.0;
|
|
eq2D::OdoEqualityConstraint constraint(odom, key1, key2, mu);
|
|
|
|
Values config1;
|
|
config1.insert(key1, x1);
|
|
config1.insert(key2, x2);
|
|
GaussianFactor::shared_ptr actual1 = constraint.linearize(config1);
|
|
GaussianFactor::shared_ptr expected1(
|
|
new JacobianFactor(key1, -eye(2,2), key2,
|
|
eye(2,2), zero(2), hard_model));
|
|
EXPECT(assert_equal(*expected1, *actual1, tol));
|
|
|
|
Values config2;
|
|
Point2 x1bad(2.0, 2.0);
|
|
Point2 x2bad(2.0, 2.0);
|
|
config2.insert(key1, x1bad);
|
|
config2.insert(key2, x2bad);
|
|
GaussianFactor::shared_ptr actual2 = constraint.linearize(config2);
|
|
GaussianFactor::shared_ptr expected2(
|
|
new JacobianFactor(key1, -eye(2,2), key2,
|
|
eye(2,2), (Vector(2) << 1.0, 1.0), hard_model));
|
|
EXPECT(assert_equal(*expected2, *actual2, tol));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( testNonlinearEqualityConstraint, odo_simple_optimize ) {
|
|
// create a two-node graph, connected by an odometry constraint, with
|
|
// a hard prior on one variable, and a conflicting soft prior
|
|
// on the other variable - the constraints should override the soft constraint
|
|
Point2 truth_pt1(1.0, 2.0), truth_pt2(3.0, 2.0);
|
|
Symbol key1('x',1), key2('x',2);
|
|
|
|
// hard prior on x1
|
|
eq2D::UnaryEqualityConstraint::shared_ptr constraint1(
|
|
new eq2D::UnaryEqualityConstraint(truth_pt1, key1));
|
|
|
|
// soft prior on x2
|
|
Point2 badPt(100.0, -200.0);
|
|
simulated2D::Prior::shared_ptr factor(
|
|
new simulated2D::Prior(badPt, soft_model, key2));
|
|
|
|
// odometry constraint
|
|
eq2D::OdoEqualityConstraint::shared_ptr constraint2(
|
|
new eq2D::OdoEqualityConstraint(
|
|
truth_pt1.between(truth_pt2), key1, key2));
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(constraint1);
|
|
graph.push_back(constraint2);
|
|
graph.push_back(factor);
|
|
|
|
Values initValues;
|
|
initValues.insert(key1, Point2());
|
|
initValues.insert(key2, badPt);
|
|
|
|
Values actual = LevenbergMarquardtOptimizer(graph, initValues).optimize();
|
|
Values expected;
|
|
expected.insert(key1, truth_pt1);
|
|
expected.insert(key2, truth_pt2);
|
|
CHECK(assert_equal(expected, actual, tol));
|
|
}
|
|
|
|
/* ********************************************************************* */
|
|
TEST (testNonlinearEqualityConstraint, two_pose ) {
|
|
/*
|
|
* Determining a ground truth linear system
|
|
* with two poses seeing one landmark, with each pose
|
|
* constrained to a particular value
|
|
*/
|
|
|
|
NonlinearFactorGraph graph;
|
|
|
|
Symbol x1('x',1), x2('x',2);
|
|
Symbol l1('l',1), l2('l',2);
|
|
Point2 pt_x1(1.0, 1.0),
|
|
pt_x2(5.0, 6.0);
|
|
graph += eq2D::UnaryEqualityConstraint(pt_x1, x1);
|
|
graph += eq2D::UnaryEqualityConstraint(pt_x2, x2);
|
|
|
|
Point2 z1(0.0, 5.0);
|
|
SharedNoiseModel sigma(noiseModel::Isotropic::Sigma(2, 0.1));
|
|
graph += simulated2D::Measurement(z1, sigma, x1,l1);
|
|
|
|
Point2 z2(-4.0, 0.0);
|
|
graph += simulated2D::Measurement(z2, sigma, x2,l2);
|
|
|
|
graph += eq2D::PointEqualityConstraint(l1, l2);
|
|
|
|
Values initialEstimate;
|
|
initialEstimate.insert(x1, pt_x1);
|
|
initialEstimate.insert(x2, Point2());
|
|
initialEstimate.insert(l1, Point2(1.0, 6.0)); // ground truth
|
|
initialEstimate.insert(l2, Point2(-4.0, 0.0)); // starting with a separate reference frame
|
|
|
|
Values actual = LevenbergMarquardtOptimizer(graph, initialEstimate).optimize();
|
|
|
|
Values expected;
|
|
expected.insert(x1, pt_x1);
|
|
expected.insert(l1, Point2(1.0, 6.0));
|
|
expected.insert(l2, Point2(1.0, 6.0));
|
|
expected.insert(x2, Point2(5.0, 6.0));
|
|
CHECK(assert_equal(expected, actual, 1e-5));
|
|
}
|
|
|
|
/* ********************************************************************* */
|
|
TEST (testNonlinearEqualityConstraint, map_warp ) {
|
|
// get a graph
|
|
NonlinearFactorGraph graph;
|
|
|
|
// keys
|
|
Symbol x1('x',1), x2('x',2);
|
|
Symbol l1('l',1), l2('l',2);
|
|
|
|
// constant constraint on x1
|
|
Point2 pose1(1.0, 1.0);
|
|
graph += eq2D::UnaryEqualityConstraint(pose1, x1);
|
|
|
|
SharedDiagonal sigma = noiseModel::Isotropic::Sigma(2, 0.1);
|
|
|
|
// measurement from x1 to l1
|
|
Point2 z1(0.0, 5.0);
|
|
graph += simulated2D::Measurement(z1, sigma, x1, l1);
|
|
|
|
// measurement from x2 to l2
|
|
Point2 z2(-4.0, 0.0);
|
|
graph += simulated2D::Measurement(z2, sigma, x2, l2);
|
|
|
|
// equality constraint between l1 and l2
|
|
graph += eq2D::PointEqualityConstraint(l1, l2);
|
|
|
|
// create an initial estimate
|
|
Values initialEstimate;
|
|
initialEstimate.insert(x1, Point2( 1.0, 1.0));
|
|
initialEstimate.insert(l1, Point2( 1.0, 6.0));
|
|
initialEstimate.insert(l2, Point2(-4.0, 0.0)); // starting with a separate reference frame
|
|
initialEstimate.insert(x2, Point2( 0.0, 0.0)); // other pose starts at origin
|
|
|
|
// optimize
|
|
Values actual = LevenbergMarquardtOptimizer(graph, initialEstimate).optimize();
|
|
|
|
Values expected;
|
|
expected.insert(x1, Point2(1.0, 1.0));
|
|
expected.insert(l1, Point2(1.0, 6.0));
|
|
expected.insert(l2, Point2(1.0, 6.0));
|
|
expected.insert(x2, Point2(5.0, 6.0));
|
|
CHECK(assert_equal(expected, actual, tol));
|
|
}
|
|
|
|
// make a realistic calibration matrix
|
|
static double fov = 60; // degrees
|
|
static int w=640,h=480;
|
|
static Cal3_S2 K(fov,w,h);
|
|
static boost::shared_ptr<Cal3_S2> shK(new Cal3_S2(K));
|
|
|
|
// typedefs for visual SLAM example
|
|
typedef NonlinearFactorGraph VGraph;
|
|
|
|
// factors for visual slam
|
|
typedef NonlinearEquality2<Point3> Point3Equality;
|
|
|
|
/* ********************************************************************* */
|
|
TEST (testNonlinearEqualityConstraint, stereo_constrained ) {
|
|
|
|
// create initial estimates
|
|
Rot3 faceDownY((Matrix)(Matrix(3,3) <<
|
|
1.0, 0.0, 0.0,
|
|
0.0, 0.0, 1.0,
|
|
0.0, -1.0, 0.0));
|
|
Pose3 pose1(faceDownY, Point3()); // origin, left camera
|
|
SimpleCamera camera1(pose1, K);
|
|
Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
|
|
SimpleCamera camera2(pose2, K);
|
|
Point3 landmark(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
|
|
|
|
// keys
|
|
Symbol x1('x',1), x2('x',2);
|
|
Symbol l1('l',1), l2('l',2);
|
|
|
|
// create graph
|
|
VGraph graph;
|
|
|
|
// create equality constraints for poses
|
|
graph += NonlinearEquality<Pose3>(x1, camera1.pose());
|
|
graph += NonlinearEquality<Pose3>(x2, camera2.pose());
|
|
|
|
// create factors
|
|
SharedDiagonal vmodel = noiseModel::Unit::Create(2);
|
|
graph += GenericProjectionFactor<Pose3,Point3,Cal3_S2>(camera1.project(landmark), vmodel, x1, l1, shK);
|
|
graph += GenericProjectionFactor<Pose3,Point3,Cal3_S2>(camera2.project(landmark), vmodel, x2, l2, shK);
|
|
|
|
// add equality constraint
|
|
graph += Point3Equality(l1, l2);
|
|
|
|
// create initial data
|
|
Point3 landmark1(0.5, 5.0, 0.0);
|
|
Point3 landmark2(1.5, 5.0, 0.0);
|
|
|
|
Values initValues;
|
|
initValues.insert(x1, pose1);
|
|
initValues.insert(x2, pose2);
|
|
initValues.insert(l1, landmark1);
|
|
initValues.insert(l2, landmark2);
|
|
|
|
// optimize
|
|
Values actual = LevenbergMarquardtOptimizer(graph, initValues).optimize();
|
|
|
|
// create config
|
|
Values truthValues;
|
|
truthValues.insert(x1, camera1.pose());
|
|
truthValues.insert(x2, camera2.pose());
|
|
truthValues.insert(l1, landmark);
|
|
truthValues.insert(l2, landmark);
|
|
|
|
// check if correct
|
|
CHECK(assert_equal(truthValues, actual, 1e-5));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
|
/* ************************************************************************* */
|