gtsam/tests/testDoglegOptimizer.cpp

153 lines
6.5 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file DoglegOptimizer.h
* @brief Unit tests for DoglegOptimizer
* @author Richard Roberts
*/
#include <CppUnitLite/TestHarness.h>
#include <tests/smallExample.h>
#include <gtsam/nonlinear/DoglegOptimizerImpl.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/JacobianFactor.h>
#include <gtsam/linear/GaussianBayesTree.h>
#include <gtsam/base/numericalDerivative.h>
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-variable"
#endif
#include <boost/bind.hpp>
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
#include <boost/assign/list_of.hpp> // for 'list_of()'
#include <functional>
#include <boost/iterator/counting_iterator.hpp>
using namespace std;
using namespace gtsam;
// Convenience for named keys
using symbol_shorthand::X;
using symbol_shorthand::L;
/* ************************************************************************* */
TEST(DoglegOptimizer, ComputeBlend) {
// Create an arbitrary Bayes Net
GaussianBayesNet gbn;
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
0, (Vector(2) << 1.0,2.0), (Matrix(2, 2) << 3.0,4.0,0.0,6.0),
3, (Matrix(2, 2) << 7.0,8.0,9.0,10.0),
4, (Matrix(2, 2) << 11.0,12.0,13.0,14.0)));
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
1, (Vector(2) << 15.0,16.0), (Matrix(2, 2) << 17.0,18.0,0.0,20.0),
2, (Matrix(2, 2) << 21.0,22.0,23.0,24.0),
4, (Matrix(2, 2) << 25.0,26.0,27.0,28.0)));
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
2, (Vector(2) << 29.0,30.0), (Matrix(2, 2) << 31.0,32.0,0.0,34.0),
3, (Matrix(2, 2) << 35.0,36.0,37.0,38.0)));
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
3, (Vector(2) << 39.0,40.0), (Matrix(2, 2) << 41.0,42.0,0.0,44.0),
4, (Matrix(2, 2) << 45.0,46.0,47.0,48.0)));
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
4, (Vector(2) << 49.0,50.0), (Matrix(2, 2) << 51.0,52.0,0.0,54.0)));
// Compute steepest descent point
VectorValues xu = gbn.optimizeGradientSearch();
// Compute Newton's method point
VectorValues xn = gbn.optimize();
// The Newton's method point should be more "adventurous", i.e. larger, than the steepest descent point
EXPECT(xu.vector().norm() < xn.vector().norm());
// Compute blend
double Delta = 1.5;
VectorValues xb = DoglegOptimizerImpl::ComputeBlend(Delta, xu, xn);
DOUBLES_EQUAL(Delta, xb.vector().norm(), 1e-10);
}
/* ************************************************************************* */
TEST(DoglegOptimizer, ComputeDoglegPoint) {
// Create an arbitrary Bayes Net
GaussianBayesNet gbn;
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
0, (Vector(2) << 1.0,2.0), (Matrix(2, 2) << 3.0,4.0,0.0,6.0),
3, (Matrix(2, 2) << 7.0,8.0,9.0,10.0),
4, (Matrix(2, 2) << 11.0,12.0,13.0,14.0)));
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
1, (Vector(2) << 15.0,16.0), (Matrix(2, 2) << 17.0,18.0,0.0,20.0),
2, (Matrix(2, 2) << 21.0,22.0,23.0,24.0),
4, (Matrix(2, 2) << 25.0,26.0,27.0,28.0)));
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
2, (Vector(2) << 29.0,30.0), (Matrix(2, 2) << 31.0,32.0,0.0,34.0),
3, (Matrix(2, 2) << 35.0,36.0,37.0,38.0)));
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
3, (Vector(2) << 39.0,40.0), (Matrix(2, 2) << 41.0,42.0,0.0,44.0),
4, (Matrix(2, 2) << 45.0,46.0,47.0,48.0)));
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
4, (Vector(2) << 49.0,50.0), (Matrix(2, 2) << 51.0,52.0,0.0,54.0)));
// Compute dogleg point for different deltas
double Delta1 = 0.5; // Less than steepest descent
VectorValues actual1 = DoglegOptimizerImpl::ComputeDoglegPoint(Delta1, gbn.optimizeGradientSearch(), gbn.optimize());
DOUBLES_EQUAL(Delta1, actual1.vector().norm(), 1e-5);
double Delta2 = 1.5; // Between steepest descent and Newton's method
VectorValues expected2 = DoglegOptimizerImpl::ComputeBlend(Delta2, gbn.optimizeGradientSearch(), gbn.optimize());
VectorValues actual2 = DoglegOptimizerImpl::ComputeDoglegPoint(Delta2, gbn.optimizeGradientSearch(), gbn.optimize());
DOUBLES_EQUAL(Delta2, actual2.vector().norm(), 1e-5);
EXPECT(assert_equal(expected2, actual2));
double Delta3 = 5.0; // Larger than Newton's method point
VectorValues expected3 = gbn.optimize();
VectorValues actual3 = DoglegOptimizerImpl::ComputeDoglegPoint(Delta3, gbn.optimizeGradientSearch(), gbn.optimize());
EXPECT(assert_equal(expected3, actual3));
}
/* ************************************************************************* */
TEST(DoglegOptimizer, Iterate) {
// really non-linear factor graph
NonlinearFactorGraph fg = example::createReallyNonlinearFactorGraph();
// config far from minimum
Point2 x0(3,0);
Values config;
config.insert(X(1), x0);
double Delta = 1.0;
for(size_t it=0; it<10; ++it) {
GaussianBayesNet gbn = *fg.linearize(config)->eliminateSequential();
// Iterate assumes that linear error = nonlinear error at the linearization point, and this should be true
double nonlinearError = fg.error(config);
double linearError = GaussianFactorGraph(gbn).error(config.zeroVectors());
DOUBLES_EQUAL(nonlinearError, linearError, 1e-5);
// cout << "it " << it << ", Delta = " << Delta << ", error = " << fg->error(*config) << endl;
VectorValues dx_u = gbn.optimizeGradientSearch();
VectorValues dx_n = gbn.optimize();
DoglegOptimizerImpl::IterationResult result = DoglegOptimizerImpl::Iterate(Delta, DoglegOptimizerImpl::SEARCH_EACH_ITERATION, dx_u, dx_n, gbn, fg, config, fg.error(config));
Delta = result.Delta;
EXPECT(result.f_error < fg.error(config)); // Check that error decreases
Values newConfig(config.retract(result.dx_d));
config = newConfig;
DOUBLES_EQUAL(fg.error(config), result.f_error, 1e-5); // Check that error is correctly filled in
}
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */