277 lines
11 KiB
C++
277 lines
11 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testBoundingConstraint.cpp
|
|
* @brief test of nonlinear inequality constraints on scalar bounds
|
|
* @author Alex Cunningham
|
|
*/
|
|
|
|
#include <tests/simulated2DConstraints.h>
|
|
#include <gtsam/inference/Symbol.h>
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
namespace iq2D = simulated2D::inequality_constraints;
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
static const double tol = 1e-5;
|
|
|
|
SharedDiagonal soft_model2 = noiseModel::Unit::Create(2);
|
|
SharedDiagonal soft_model2_alt = noiseModel::Isotropic::Sigma(2, 0.1);
|
|
SharedDiagonal hard_model1 = noiseModel::Constrained::All(1);
|
|
|
|
// some simple inequality constraints
|
|
gtsam::Key key = 1;
|
|
double mu = 10.0;
|
|
// greater than
|
|
iq2D::PoseXInequality constraint1(key, 1.0, true, mu);
|
|
iq2D::PoseYInequality constraint2(key, 2.0, true, mu);
|
|
|
|
// less than
|
|
iq2D::PoseXInequality constraint3(key, 1.0, false, mu);
|
|
iq2D::PoseYInequality constraint4(key, 2.0, false, mu);
|
|
|
|
/* ************************************************************************* */
|
|
TEST( testBoundingConstraint, unary_basics_inactive1 ) {
|
|
Point2 pt1(2.0, 3.0);
|
|
Values config;
|
|
config.insert(key, pt1);
|
|
EXPECT(!constraint1.active(config));
|
|
EXPECT(!constraint2.active(config));
|
|
EXPECT_DOUBLES_EQUAL(1.0, constraint1.threshold(), tol);
|
|
EXPECT_DOUBLES_EQUAL(2.0, constraint2.threshold(), tol);
|
|
EXPECT(constraint1.isGreaterThan());
|
|
EXPECT(constraint2.isGreaterThan());
|
|
EXPECT(assert_equal(ones(1), constraint1.evaluateError(pt1), tol));
|
|
EXPECT(assert_equal(ones(1), constraint2.evaluateError(pt1), tol));
|
|
EXPECT(assert_equal(zero(1), constraint1.unwhitenedError(config), tol));
|
|
EXPECT(assert_equal(zero(1), constraint2.unwhitenedError(config), tol));
|
|
EXPECT_DOUBLES_EQUAL(0.0, constraint1.error(config), tol);
|
|
EXPECT_DOUBLES_EQUAL(0.0, constraint2.error(config), tol);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( testBoundingConstraint, unary_basics_inactive2 ) {
|
|
Point2 pt2(-2.0, -3.0);
|
|
Values config;
|
|
config.insert(key, pt2);
|
|
EXPECT(!constraint3.active(config));
|
|
EXPECT(!constraint4.active(config));
|
|
EXPECT_DOUBLES_EQUAL(1.0, constraint3.threshold(), tol);
|
|
EXPECT_DOUBLES_EQUAL(2.0, constraint4.threshold(), tol);
|
|
EXPECT(!constraint3.isGreaterThan());
|
|
EXPECT(!constraint4.isGreaterThan());
|
|
EXPECT(assert_equal(repeat(1, 3.0), constraint3.evaluateError(pt2), tol));
|
|
EXPECT(assert_equal(repeat(1, 5.0), constraint4.evaluateError(pt2), tol));
|
|
EXPECT(assert_equal(zero(1), constraint3.unwhitenedError(config), tol));
|
|
EXPECT(assert_equal(zero(1), constraint4.unwhitenedError(config), tol));
|
|
EXPECT_DOUBLES_EQUAL(0.0, constraint3.error(config), tol);
|
|
EXPECT_DOUBLES_EQUAL(0.0, constraint4.error(config), tol);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( testBoundingConstraint, unary_basics_active1 ) {
|
|
Point2 pt2(-2.0, -3.0);
|
|
Values config;
|
|
config.insert(key, pt2);
|
|
EXPECT(constraint1.active(config));
|
|
EXPECT(constraint2.active(config));
|
|
EXPECT(assert_equal(repeat(1,-3.0), constraint1.evaluateError(pt2), tol));
|
|
EXPECT(assert_equal(repeat(1,-5.0), constraint2.evaluateError(pt2), tol));
|
|
EXPECT(assert_equal(repeat(1,-3.0), constraint1.unwhitenedError(config), tol));
|
|
EXPECT(assert_equal(repeat(1,-5.0), constraint2.unwhitenedError(config), tol));
|
|
EXPECT_DOUBLES_EQUAL(45.0, constraint1.error(config), tol);
|
|
EXPECT_DOUBLES_EQUAL(125.0, constraint2.error(config), tol);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( testBoundingConstraint, unary_basics_active2 ) {
|
|
Point2 pt1(2.0, 3.0);
|
|
Values config;
|
|
config.insert(key, pt1);
|
|
EXPECT(constraint3.active(config));
|
|
EXPECT(constraint4.active(config));
|
|
EXPECT(assert_equal(-1.0 * ones(1), constraint3.evaluateError(pt1), tol));
|
|
EXPECT(assert_equal(-1.0 * ones(1), constraint4.evaluateError(pt1), tol));
|
|
EXPECT(assert_equal(-1.0 * ones(1), constraint3.unwhitenedError(config), tol));
|
|
EXPECT(assert_equal(-1.0 * ones(1), constraint4.unwhitenedError(config), tol));
|
|
EXPECT_DOUBLES_EQUAL(5.0, constraint3.error(config), tol);
|
|
EXPECT_DOUBLES_EQUAL(5.0, constraint4.error(config), tol);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( testBoundingConstraint, unary_linearization_inactive) {
|
|
Point2 pt1(2.0, 3.0);
|
|
Values config1;
|
|
config1.insert(key, pt1);
|
|
GaussianFactor::shared_ptr actual1 = constraint1.linearize(config1);
|
|
GaussianFactor::shared_ptr actual2 = constraint2.linearize(config1);
|
|
EXPECT(!actual1);
|
|
EXPECT(!actual2);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( testBoundingConstraint, unary_linearization_active) {
|
|
Point2 pt2(-2.0, -3.0);
|
|
Values config2;
|
|
config2.insert(key, pt2);
|
|
GaussianFactor::shared_ptr actual1 = constraint1.linearize(config2);
|
|
GaussianFactor::shared_ptr actual2 = constraint2.linearize(config2);
|
|
JacobianFactor expected1(key, (Matrix(1, 2) << 1.0, 0.0), repeat(1, 3.0), hard_model1);
|
|
JacobianFactor expected2(key, (Matrix(1, 2) << 0.0, 1.0), repeat(1, 5.0), hard_model1);
|
|
EXPECT(assert_equal((const GaussianFactor&)expected1, *actual1, tol));
|
|
EXPECT(assert_equal((const GaussianFactor&)expected2, *actual2, tol));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( testBoundingConstraint, unary_simple_optimization1) {
|
|
// create a single-node graph with a soft and hard constraint to
|
|
// ensure that the hard constraint overrides the soft constraint
|
|
Point2 goal_pt(1.0, 2.0);
|
|
Point2 start_pt(0.0, 1.0);
|
|
|
|
NonlinearFactorGraph graph;
|
|
Symbol x1('x',1);
|
|
graph += iq2D::PoseXInequality(x1, 1.0, true);
|
|
graph += iq2D::PoseYInequality(x1, 2.0, true);
|
|
graph += simulated2D::Prior(start_pt, soft_model2, x1);
|
|
|
|
Values initValues;
|
|
initValues.insert(x1, start_pt);
|
|
|
|
Values actual = LevenbergMarquardtOptimizer(graph, initValues).optimize();
|
|
Values expected;
|
|
expected.insert(x1, goal_pt);
|
|
CHECK(assert_equal(expected, actual, tol));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( testBoundingConstraint, unary_simple_optimization2) {
|
|
// create a single-node graph with a soft and hard constraint to
|
|
// ensure that the hard constraint overrides the soft constraint
|
|
Point2 goal_pt(1.0, 2.0);
|
|
Point2 start_pt(2.0, 3.0);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph += iq2D::PoseXInequality(key, 1.0, false);
|
|
graph += iq2D::PoseYInequality(key, 2.0, false);
|
|
graph += simulated2D::Prior(start_pt, soft_model2, key);
|
|
|
|
Values initValues;
|
|
initValues.insert(key, start_pt);
|
|
|
|
Values actual = LevenbergMarquardtOptimizer(graph, initValues).optimize();
|
|
Values expected;
|
|
expected.insert(key, goal_pt);
|
|
CHECK(assert_equal(expected, actual, tol));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( testBoundingConstraint, MaxDistance_basics) {
|
|
gtsam::Key key1 = 1, key2 = 2;
|
|
Point2 pt1, pt2(1.0, 0.0), pt3(2.0, 0.0), pt4(3.0, 0.0);
|
|
iq2D::PoseMaxDistConstraint rangeBound(key1, key2, 2.0, mu);
|
|
EXPECT_DOUBLES_EQUAL(2.0, rangeBound.threshold(), tol);
|
|
EXPECT(!rangeBound.isGreaterThan());
|
|
EXPECT(rangeBound.dim() == 1);
|
|
|
|
EXPECT(assert_equal(((Vector)Vector(1) << 2.0), rangeBound.evaluateError(pt1, pt1)));
|
|
EXPECT(assert_equal(ones(1), rangeBound.evaluateError(pt1, pt2)));
|
|
EXPECT(assert_equal(zero(1), rangeBound.evaluateError(pt1, pt3)));
|
|
EXPECT(assert_equal(-1.0*ones(1), rangeBound.evaluateError(pt1, pt4)));
|
|
|
|
Values config1;
|
|
config1.insert(key1, pt1);
|
|
config1.insert(key2, pt1);
|
|
EXPECT(!rangeBound.active(config1));
|
|
EXPECT(assert_equal(zero(1), rangeBound.unwhitenedError(config1)));
|
|
EXPECT(!rangeBound.linearize(config1));
|
|
EXPECT_DOUBLES_EQUAL(0.0, rangeBound.error(config1), tol);
|
|
|
|
config1.update(key2, pt2);
|
|
EXPECT(!rangeBound.active(config1));
|
|
EXPECT(assert_equal(zero(1), rangeBound.unwhitenedError(config1)));
|
|
EXPECT(!rangeBound.linearize(config1));
|
|
EXPECT_DOUBLES_EQUAL(0.0, rangeBound.error(config1), tol);
|
|
|
|
config1.update(key2, pt3);
|
|
EXPECT(rangeBound.active(config1));
|
|
EXPECT(assert_equal(zero(1), rangeBound.unwhitenedError(config1)));
|
|
EXPECT_DOUBLES_EQUAL(0.0, rangeBound.error(config1), tol);
|
|
|
|
config1.update(key2, pt4);
|
|
EXPECT(rangeBound.active(config1));
|
|
EXPECT(assert_equal(-1.0*ones(1), rangeBound.unwhitenedError(config1)));
|
|
EXPECT_DOUBLES_EQUAL(0.5*mu, rangeBound.error(config1), tol);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( testBoundingConstraint, MaxDistance_simple_optimization) {
|
|
|
|
Point2 pt1, pt2_init(5.0, 0.0), pt2_goal(2.0, 0.0);
|
|
Symbol x1('x',1), x2('x',2);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph += simulated2D::equality_constraints::UnaryEqualityConstraint(pt1, x1);
|
|
graph += simulated2D::Prior(pt2_init, soft_model2_alt, x2);
|
|
graph += iq2D::PoseMaxDistConstraint(x1, x2, 2.0);
|
|
|
|
Values initial_state;
|
|
initial_state.insert(x1, pt1);
|
|
initial_state.insert(x2, pt2_init);
|
|
|
|
Values expected;
|
|
expected.insert(x1, pt1);
|
|
expected.insert(x2, pt2_goal);
|
|
|
|
// FAILS: VectorValues assertion failure
|
|
// Optimizer::shared_values actual = Optimizer::optimizeLM(graph, initial_state);
|
|
// EXPECT(assert_equal(expected, *actual, tol));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( testBoundingConstraint, avoid_demo) {
|
|
|
|
Symbol x1('x',1), x2('x',2), x3('x',3), l1('l',1);
|
|
double radius = 1.0;
|
|
Point2 x1_pt, x2_init(2.0, 0.5), x2_goal(2.0, 1.0), x3_pt(4.0, 0.0), l1_pt(2.0, 0.0);
|
|
Point2 odo(2.0, 0.0);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph += simulated2D::equality_constraints::UnaryEqualityConstraint(x1_pt, x1);
|
|
graph += simulated2D::Odometry(odo, soft_model2_alt, x1, x2);
|
|
graph += iq2D::LandmarkAvoid(x2, l1, radius);
|
|
graph += simulated2D::equality_constraints::UnaryEqualityPointConstraint(l1_pt, l1);
|
|
graph += simulated2D::Odometry(odo, soft_model2_alt, x2, x3);
|
|
graph += simulated2D::equality_constraints::UnaryEqualityConstraint(x3_pt, x3);
|
|
|
|
Values init, expected;
|
|
init.insert(x1, x1_pt);
|
|
init.insert(x3, x3_pt);
|
|
init.insert(l1, l1_pt);
|
|
expected = init;
|
|
init.insert(x2, x2_init);
|
|
expected.insert(x2, x2_goal);
|
|
|
|
// FAILS: segfaults on optimization
|
|
// Optimizer::shared_values actual = Optimizer::optimizeLM(graph, init);
|
|
// EXPECT(assert_equal(expected, *actual, tol));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
|
/* ************************************************************************* */
|
|
|