144 lines
4.1 KiB
C++
144 lines
4.1 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* LinearInequality.h
|
|
* @brief: LinearInequality derived from Base with constrained noise model
|
|
* @date: Nov 27, 2014
|
|
* @author: thduynguyen
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam/linear/JacobianFactor.h>
|
|
|
|
namespace gtsam {
|
|
|
|
typedef Eigen::RowVectorXd RowVector;
|
|
|
|
/**
|
|
* This class defines Linear constraints by inherit Base
|
|
* with the special Constrained noise model
|
|
*/
|
|
class LinearInequality: public JacobianFactor {
|
|
public:
|
|
typedef LinearInequality This; ///< Typedef to this class
|
|
typedef JacobianFactor Base; ///< Typedef to base class
|
|
typedef boost::shared_ptr<This> shared_ptr; ///< shared_ptr to this class
|
|
|
|
private:
|
|
Key dualKey_;
|
|
bool active_;
|
|
|
|
public:
|
|
/** default constructor for I/O */
|
|
LinearInequality() :
|
|
Base() {
|
|
}
|
|
|
|
/** Conversion from HessianFactor (does Cholesky to obtain Jacobian matrix) */
|
|
explicit LinearInequality(const HessianFactor& hf) {
|
|
throw std::runtime_error(
|
|
"Cannot convert HessianFactor to LinearInequality");
|
|
}
|
|
|
|
/** Construct unary factor */
|
|
LinearInequality(Key i1, const RowVector& A1, double b, Key dualKey) :
|
|
Base(i1, A1, (Vector(1) << b).finished(), noiseModel::Constrained::All(1)), dualKey_(
|
|
dualKey) {
|
|
}
|
|
|
|
/** Construct binary factor */
|
|
LinearInequality(Key i1, const RowVector& A1, Key i2, const RowVector& A2, double b,
|
|
Key dualKey) :
|
|
Base(i1, A1, i2, A2, (Vector(1) << b).finished(), noiseModel::Constrained::All(1)), dualKey_(
|
|
dualKey) {
|
|
}
|
|
|
|
/** Construct ternary factor */
|
|
LinearInequality(Key i1, const RowVector& A1, Key i2, const RowVector& A2, Key i3,
|
|
const RowVector& A3, double b, Key dualKey) :
|
|
Base(i1, A1, i2, A2, i3, A3, (Vector(1) << b).finished(),
|
|
noiseModel::Constrained::All(1)), dualKey_(dualKey) {
|
|
}
|
|
|
|
/** Construct an n-ary factor
|
|
* @tparam TERMS A container whose value type is std::pair<Key, Matrix>, specifying the
|
|
* collection of keys and matrices making up the factor. */
|
|
template<typename TERMS>
|
|
LinearInequality(const TERMS& terms, double b, Key dualKey) :
|
|
Base(terms, (Vector(1) << b).finished(), noiseModel::Constrained::All(1)), dualKey_(
|
|
dualKey) {
|
|
}
|
|
|
|
/** Virtual destructor */
|
|
virtual ~LinearInequality() {
|
|
}
|
|
|
|
/** equals */
|
|
virtual bool equals(const GaussianFactor& lf, double tol = 1e-9) const {
|
|
return Base::equals(lf, tol);
|
|
}
|
|
|
|
/** print */
|
|
virtual void print(const std::string& s = "", const KeyFormatter& formatter =
|
|
DefaultKeyFormatter) const {
|
|
if (active())
|
|
Base::print(s + " Active", formatter);
|
|
else
|
|
Base::print(s + " Inactive", formatter);
|
|
}
|
|
|
|
/** Clone this LinearInequality */
|
|
virtual GaussianFactor::shared_ptr clone() const {
|
|
return boost::static_pointer_cast<GaussianFactor>(
|
|
boost::make_shared<LinearInequality>(*this));
|
|
}
|
|
|
|
/// dual key
|
|
Key dualKey() const { return dualKey_; }
|
|
|
|
/// return true if this constraint is active
|
|
bool active() const { return active_; }
|
|
|
|
/// Make this inequality constraint active
|
|
void activate() { active_ = true; }
|
|
|
|
/// Make this inequality constraint inactive
|
|
void inactivate() { active_ = false; }
|
|
|
|
/** Special error_vector for constraints (A*x-b) */
|
|
Vector error_vector(const VectorValues& c) const {
|
|
return unweighted_error(c);
|
|
}
|
|
|
|
/** Special error for single-valued inequality constraints. */
|
|
virtual double error(const VectorValues& c) const {
|
|
return error_vector(c)[0];
|
|
}
|
|
|
|
/** dot product of row s with the corresponding vector in p */
|
|
double dotProductRow(const VectorValues& p) const {
|
|
double aTp = 0.0;
|
|
for (const_iterator xj = begin(); xj != end(); ++xj) {
|
|
Vector pj = p.at(*xj);
|
|
Vector aj = getA(xj).transpose();
|
|
aTp += aj.dot(pj);
|
|
}
|
|
return aTp;
|
|
}
|
|
|
|
};
|
|
// LinearInequality
|
|
|
|
}// gtsam
|
|
|