gtsam/examples/VisualISAM2Example.cpp

146 lines
5.9 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file VisualISAM2Example.cpp
* @brief A visualSLAM example for the structure-from-motion problem on a
* simulated dataset This version uses iSAM2 to solve the problem incrementally
* @author Duy-Nguyen Ta
*/
/**
* A structure-from-motion example with landmarks
* - The landmarks form a 10 meter cube
* - The robot rotates around the landmarks, always facing towards the cube
*/
// For loading the data
#include "SFMdata.h"
// Camera observations of landmarks will be stored as Point2 (x, y).
#include <gtsam/geometry/Point2.h>
// Each variable in the system (poses and landmarks) must be identified with a
// unique key. We can either use simple integer keys (1, 2, 3, ...) or symbols
// (X1, X2, L1). Here we will use Symbols
#include <gtsam/inference/Symbol.h>
// We want to use iSAM2 to solve the structure-from-motion problem
// incrementally, so include iSAM2 here
#include <gtsam/nonlinear/ISAM2.h>
// iSAM2 requires as input a set of new factors to be added stored in a factor
// graph, and initial guesses for any new variables used in the added factors
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
// In GTSAM, measurement functions are represented as 'factors'. Several common
// factors have been provided with the library for solving robotics/SLAM/Bundle
// Adjustment problems. Here we will use Projection factors to model the
// camera's landmark observations. Also, we will initialize the robot at some
// location using a Prior factor.
#include <gtsam/slam/ProjectionFactor.h>
#include <vector>
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
int main(int argc, char* argv[]) {
// Define the camera calibration parameters
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
// Define the camera observation noise model, 1 pixel stddev
auto measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0);
// Create the set of ground-truth landmarks
vector<Point3> points = createPoints();
// Create the set of ground-truth poses
vector<Pose3> poses = createPoses();
// Create an iSAM2 object. Unlike iSAM1, which performs periodic batch steps
// to maintain proper linearization and efficient variable ordering, iSAM2
// performs partial relinearization/reordering at each step. A parameter
// structure is available that allows the user to set various properties, such
// as the relinearization threshold and type of linear solver. For this
// example, we we set the relinearization threshold small so the iSAM2 result
// will approach the batch result.
ISAM2Params parameters;
parameters.relinearizeThreshold = 0.01;
parameters.relinearizeSkip = 1;
ISAM2 isam(parameters);
// Create a Factor Graph and Values to hold the new data
NonlinearFactorGraph graph;
Values initialEstimate;
// Loop over the poses, adding the observations to iSAM incrementally
for (size_t i = 0; i < poses.size(); ++i) {
// Add factors for each landmark observation
for (size_t j = 0; j < points.size(); ++j) {
PinholeCamera<Cal3_S2> camera(poses[i], *K);
Point2 measurement = camera.project(points[j]);
graph.emplace_shared<GenericProjectionFactor<Pose3, Point3, Cal3_S2> >(
measurement, measurementNoise, Symbol('x', i), Symbol('l', j), K);
}
// Add an initial guess for the current pose
// Intentionally initialize the variables off from the ground truth
static Pose3 kDeltaPose(Rot3::Rodrigues(-0.1, 0.2, 0.25),
Point3(0.05, -0.10, 0.20));
initialEstimate.insert(Symbol('x', i), poses[i] * kDeltaPose);
// If this is the first iteration, add a prior on the first pose to set the
// coordinate frame and a prior on the first landmark to set the scale Also,
// as iSAM solves incrementally, we must wait until each is observed at
// least twice before adding it to iSAM.
if (i == 0) {
// Add a prior on pose x0, 30cm std on x,y,z and 0.1 rad on roll,pitch,yaw
static auto kPosePrior = noiseModel::Diagonal::Sigmas(
(Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3))
.finished());
graph.addPrior(Symbol('x', 0), poses[0], kPosePrior);
// Add a prior on landmark l0
static auto kPointPrior = noiseModel::Isotropic::Sigma(3, 0.1);
graph.addPrior(Symbol('l', 0), points[0], kPointPrior);
// Add initial guesses to all observed landmarks
// Intentionally initialize the variables off from the ground truth
static Point3 kDeltaPoint(-0.25, 0.20, 0.15);
for (size_t j = 0; j < points.size(); ++j)
initialEstimate.insert<Point3>(Symbol('l', j), points[j] + kDeltaPoint);
} else {
// Update iSAM with the new factors
isam.update(graph, initialEstimate);
// Each call to iSAM2 update(*) performs one iteration of the iterative
// nonlinear solver. If accuracy is desired at the expense of time,
// update(*) can be called additional times to perform multiple optimizer
// iterations every step.
isam.update();
Values currentEstimate = isam.calculateEstimate();
cout << "****************************************************" << endl;
cout << "Frame " << i << ": " << endl;
currentEstimate.print("Current estimate: ");
// Clear the factor graph and values for the next iteration
graph.resize(0);
initialEstimate.clear();
}
}
return 0;
}
/* ************************************************************************* */