gtsam/matlab/unstable_examples/+imuSimulator/covarianceAnalysisBetween.m

308 lines
12 KiB
Matlab

import gtsam.*;
% Test GTSAM covariances on a graph with betweenFactors
% Authors: Luca Carlone, David Jensen
% Date: 2014/4/6
clc
clear all
close all
%% Configuration
useRealData = 1; % controls whether or not to use the Real data (is available) as the ground truth traj
includeIMUFactors = 0; % if true, IMU type 1 Factors will be generated for the random trajectory
% includeCameraFactors = 0; % not implemented yet
trajectoryLength = 210; % length of the ground truth trajectory
%% Imu metadata
epsBias = 1e-7;
zeroBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1));
IMU_metadata.AccelerometerSigma = 1e-5;
IMU_metadata.GyroscopeSigma = 1e-7;
IMU_metadata.IntegrationSigma = 1e-10;
IMU_metadata.BiasAccelerometerSigma = epsBias;
IMU_metadata.BiasGyroscopeSigma = epsBias;
IMU_metadata.BiasAccOmegaInit = epsBias;
noiseVel = noiseModel.Isotropic.Sigma(3, 0.1);
noiseBias = noiseModel.Isotropic.Sigma(6, epsBias);
%% Between metadata
if useRealData == 1
sigma_ang = 1e-4; sigma_cart = 0.01;
else
sigma_ang = 1e-2; sigma_cart = 0.1;
end
noiseVectorPose = [sigma_ang; sigma_ang; sigma_ang; sigma_cart; sigma_cart; sigma_cart];
noisePose = noiseModel.Diagonal.Sigmas(noiseVectorPose);
%% Create ground truth trajectory
gtValues = Values;
gtGraph = NonlinearFactorGraph;
if useRealData == 1
subsampleStep = 20;
%% Create a ground truth trajectory from Real data (if available)
fprintf('\nUsing real data as ground truth\n');
gtScenario = load('truth_scen2.mat', 'Time', 'Lat', 'Lon', 'Alt', 'Roll', 'Pitch', 'Heading',...
'VEast', 'VNorth', 'VUp');
Org_lat = gtScenario.Lat(1);
Org_lon = gtScenario.Lon(1);
initialPositionECEF = imuSimulator.LatLonHRad_to_ECEF([gtScenario.Lat(1); gtScenario.Lon(1); gtScenario.Alt(1)]);
% Limit the trajectory length
trajectoryLength = min([length(gtScenario.Lat) trajectoryLength]);
for i=1:trajectoryLength
currentPoseKey = symbol('x', i-1);
scenarioInd = subsampleStep * (i-1) + 1
gtECEF = imuSimulator.LatLonHRad_to_ECEF([gtScenario.Lat(scenarioInd); gtScenario.Lon(scenarioInd); gtScenario.Alt(scenarioInd)]);
% truth in ENU
dX = gtECEF(1) - initialPositionECEF(1);
dY = gtECEF(2) - initialPositionECEF(2);
dZ = gtECEF(3) - initialPositionECEF(3);
[xlt, ylt, zlt] = imuSimulator.ct2ENU(dX, dY, dZ,Org_lat, Org_lon);
gtPosition = [xlt, ylt, zlt]';
gtRotation = Rot3; % Rot3.ypr(gtScenario.Heading(scenarioInd), gtScenario.Pitch(scenarioInd), gtScenario.Roll(scenarioInd));
currentPose = Pose3(gtRotation, Point3(gtPosition));
% Add values
gtValues.insert(currentPoseKey, currentPose);
if i==1 % first time step, add priors
warning('roll-pitch-yaw is different from Rodriguez')
warning('using identity rotation')
gtGraph.add(PriorFactorPose3(currentPoseKey, currentPose, noisePose));
measurements.posePrior = currentPose;
else
% Generate measurements as the current pose measured in the frame of
% the previous pose
deltaPose = prevPose.between(currentPose);
measurements.gtDeltaMatrix(i-1,:) = Pose3.Logmap(deltaPose);
% Add the factor to the factor graph
gtGraph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, deltaPose, noisePose));
end
prevPose = currentPose;
end
else
%% Create a random trajectory as ground truth
currentVel = [0; 0; 0]; % initial velocity (used to generate IMU measurements)
currentPose = Pose3; % initial pose % initial pose
deltaT = 0.1; % amount of time between IMU measurements
g = [0; 0; 0]; % gravity
omegaCoriolis = [0; 0; 0]; % Coriolis
unsmooth_DP = 0.5; % controls smoothness on translation norm
unsmooth_DR = 0.1; % controls smoothness on rotation norm
fprintf('\nCreating a random ground truth trajectory\n');
%% Add priors
currentPoseKey = symbol('x', 0);
gtValues.insert(currentPoseKey, currentPose);
gtGraph.add(PriorFactorPose3(currentPoseKey, currentPose, noisePose));
if includeIMUFactors == 1
currentVelKey = symbol('v', 0);
currentBiasKey = symbol('b', 0);
gtValues.insert(currentVelKey, LieVector(currentVel));
gtValues.insert(currentBiasKey, zeroBias);
gtGraph.add(PriorFactorLieVector(currentVelKey, LieVector(currentVel), noiseVel));
gtGraph.add(PriorFactorConstantBias(currentBiasKey, zeroBias, noiseBias));
end
for i=1:trajectoryLength
currentPoseKey = symbol('x', i);
gtDeltaPosition = unsmooth_DP*randn(3,1) + [20;0;0]; % create random vector with mean = [1 0 0] and sigma = 0.5
gtDeltaRotation = unsmooth_DR*randn(3,1) + [0;0;0]; % create random rotation with mean [0 0 0] and sigma = 0.1 (rad)
gtDeltaMatrix(i,:) = [gtDeltaRotation; gtDeltaPosition];
gtMeasurements.deltaPose = Pose3.Expmap(gtDeltaMatrix(i,:)');
% "Deduce" ground truth measurements
% deltaPose are the gt measurements - save them in some structure
currentPose = currentPose.compose(gtMeasurements.deltaPose);
gtValues.insert(currentPoseKey, currentPose);
% Add the factors to the factor graph
gtGraph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, gtMeasurements.deltaPose, noisePose));
% Add IMU factors
if includeIMUFactors == 1
currentVelKey = symbol('v', i); % not used if includeIMUFactors is false
currentBiasKey = symbol('b', i); % not used if includeIMUFactors is false
% create accel and gyro measurements based on
gtMeasurements.imu.gyro = gtDeltaMatrix(i, 1:3)'./deltaT;
% acc = (deltaPosition - initialVel * dT) * (2/dt^2)
gtMeasurements.imu.accel = (gtDeltaMatrix(i, 4:6)' - currentVel.*deltaT).*(2/(deltaT*deltaT));
% Initialize preintegration
imuMeasurement = gtsam.ImuFactorPreintegratedMeasurements(zeroBias, ...
IMU_metadata.AccelerometerSigma.^2 * eye(3), ...
IMU_metadata.GyroscopeSigma.^2 * eye(3), ...
IMU_metadata.IntegrationSigma.^2 * eye(3));
% Preintegrate
imuMeasurement.integrateMeasurement(gtMeasurements.imu.accel, gtMeasurements.imu.gyro, deltaT);
% Add Imu factor
gtGraph.add(ImuFactor(currentPoseKey-1, currentVelKey-1, currentPoseKey, currentVelKey, ...
currentBiasKey-1, imuMeasurement, g, omegaCoriolis));
% Add between on biases
gtGraph.add(BetweenFactorConstantBias(currentBiasKey-1, currentBiasKey, zeroBias, ...
noiseModel.Isotropic.Sigma(6, epsBias)));
% Additional prior on zerobias
gtGraph.add(PriorFactorConstantBias(currentBiasKey, zeroBias, ...
noiseModel.Isotropic.Sigma(6, epsBias)));
% update current velocity
currentVel = gtDeltaMatrix(i,4:6)'./deltaT;
gtValues.insert(currentVelKey, LieVector(currentVel));
gtGraph.add(PriorFactorLieVector(currentVelKey, LieVector(currentVel), noiseVel));
gtValues.insert(currentBiasKey, zeroBias);
end
end % end of trajectory length
end % end of ground truth creation
warning('Additional prior on zerobias')
warning('Additional PriorFactorLieVector on velocities')
% gtPoses = Values;
% for i=0:trajectoryLength
% currentPoseKey = symbol('x', i);
% currentPose = gtValues.at(currentPoseKey);
% gtPoses.insert(currentPoseKey, currentPose);
% end
figure(1)
hold on;
plot3DTrajectory(gtValues, '-r', [], 1, Marginals(gtGraph, gtValues));
axis equal
dis('Plotted ground truth')
numMonteCarloRuns = 100;
for k=1:numMonteCarloRuns
fprintf('Monte Carlo Run %d.\n', k');
% create a new graph
graph = NonlinearFactorGraph;
% noisy prior
if useRealData == 1
currentPoseKey = symbol('x', 0);
initialPosition = imuSimulator.LatLonHRad_to_ECEF([gtScenario.Lat(1); gtScenario.Lon(1); gtScenario.Alt(1)]);
initialRotation = [gtScenario.Roll(1); gtScenario.Pitch(1); gtScenario.Heading(1)];
initialPose = Pose3.Expmap([initialRotation; initialPosition] + (noiseVector .* randn(6,1))); % initial noisy pose
graph.add(PriorFactorPose3(currentPoseKey, initialPose, noisePose));
else
currentPoseKey = symbol('x', 0);
noisyDelta = noiseVectorPose .* randn(6,1);
initialPose = Pose3.Expmap(noisyDelta);
graph.add(PriorFactorPose3(currentPoseKey, initialPose, noisePose));
end
for i=1:size(gtDeltaMatrix,1)
currentPoseKey = symbol('x', i);
% for each measurement: add noise and add to graph
noisyDelta = gtDeltaMatrix(i,:)' + (noiseVectorPose .* randn(6,1));
noisyDeltaPose = Pose3.Expmap(noisyDelta);
% Add the factors to the factor graph
graph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, noisyDeltaPose, noisePose));
end
% optimize
optimizer = GaussNewtonOptimizer(graph, gtValues);
estimate = optimizer.optimize();
figure(1)
plot3DTrajectory(estimate, '-b');
marginals = Marginals(graph, estimate);
% for each pose in the trajectory
for i=1:size(gtDeltaMatrix,1)+1
% compute estimation errors
currentPoseKey = symbol('x', i-1);
gtPosition = gtValues.at(currentPoseKey).translation.vector;
estPosition = estimate.at(currentPoseKey).translation.vector;
estR = estimate.at(currentPoseKey).rotation.matrix;
errPosition = estPosition - gtPosition;
% compute covariances:
cov = marginals.marginalCovariance(currentPoseKey);
covPosition = estR * cov(4:6,4:6) * estR';
% compute NEES using (estimationError = estimatedValues - gtValues) and estimated covariances
NEES(k,i) = errPosition' * inv(covPosition) * errPosition; % distributed according to a Chi square with n = 3 dof
end
figure(2)
hold on
plot(NEES(k,:),'-b','LineWidth',1.5)
end
%%
ANEES = mean(NEES);
plot(ANEES,'-r','LineWidth',2)
plot(3*ones(size(ANEES,2),1),'k--'); % Expectation(ANEES) = number of dof
box on
set(gca,'Fontsize',16)
title('NEES and ANEES');
%%
figure(1)
box on
set(gca,'Fontsize',16)
title('Ground truth and estimates for each MC runs');
%% Let us compute statistics on the overall NEES
n = 3; % position vector dimension
N = numMonteCarloRuns; % number of runs
alpha = 0.01; % confidence level
% mean_value = n*N; % mean value of the Chi-square distribution
% (we divide by n * N and for this reason we expect ANEES around 1)
r1 = chi2inv(alpha, n * N) / (n * N);
r2 = chi2inv(1-alpha, n * N) / (n * N);
% output here
fprintf(1, 'r1 = %g\n', r1);
fprintf(1, 'r2 = %g\n', r2);
figure(3)
hold on
plot(ANEES/n,'-b','LineWidth',2)
plot(ones(size(ANEES,2),1),'r-');
plot(r1*ones(size(ANEES,2),1),'k-.');
plot(r2*ones(size(ANEES,2),1),'k-.');
box on
set(gca,'Fontsize',16)
title('NEES normalized by dof VS bounds');
%% NEES COMPUTATION (Bar-Shalom 2001, Section 5.4)
% the nees for a single experiment (i) is defined as
% NEES_i = xtilda' * inv(P) * xtilda,
% where xtilda in R^n is the estimation
% error, and P is the covariance estimated by the approach we want to test
%
% Average NEES. Given N Monte Carlo simulations, i=1,...,N, the average
% NEES is:
% ANEES = sum(NEES_i)/N
% The quantity N*ANEES is distributed according to a Chi-square
% distribution with N*n degrees of freedom.
%
% For the single run case, N=1, therefore NEES = ANEES is distributed
% according to a chi-square distribution with n degrees of freedom (e.g. n=3
% if we are testing a position estimate)
% Therefore its mean should be n (difficult to see from a single run)
% and, with probability alpha, it should hold:
%
% NEES in [r1, r2]
%
% where r1 and r2 are built from the Chi-square distribution