gtsam/gtsam_unstable/nonlinear/tests/testBasisDecompositions.cpp

232 lines
6.3 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testBasisDecompositions.cpp
* @date November 23, 2014
* @author Frank Dellaert
* @brief unit tests for Basis Decompositions w Expressions
*/
#include <gtsam/base/Matrix.h>
namespace gtsam {
/// Fourier
template<int N>
class Fourier {
public:
typedef Eigen::Matrix<double, N, 1> Coefficients;
typedef Eigen::Matrix<double, 1, N> Jacobian;
private:
double x_;
Jacobian H_;
public:
/// Constructor
Fourier(double x) :
x_(x) {
H_(0, 0) = 1;
for (size_t i = 1; i < N; i += 2) {
H_(0, i) = cos(i * x);
H_(0, i + 1) = sin(i * x);
}
}
/// Given coefficients c, predict value for x
double operator()(const Coefficients& c, boost::optional<Jacobian&> H) {
if (H)
(*H) = H_;
return H_ * c;
}
};
}
#include <gtsam_unstable/nonlinear/ExpressionFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/VectorValues.h>
namespace gtsam {
/// For now, this is our sequence representation
typedef std::map<double, double> Sequence;
/**
* Class that does Fourier Decomposition via least squares
*/
class FourierDecomposition {
public:
typedef Vector3 Coefficients; ///< Fourier coefficients
private:
Coefficients c_;
public:
/// Create nonlinear FG from Sequence
static NonlinearFactorGraph NonlinearGraph(const Sequence& sequence,
const SharedNoiseModel& model) {
NonlinearFactorGraph graph;
Expression<Coefficients> c(0);
typedef std::pair<double, double> Sample;
BOOST_FOREACH(Sample sample, sequence) {
Expression<double> expression(Fourier<3>(sample.first), c);
ExpressionFactor<double> factor(model, sample.second, expression);
graph.add(factor);
}
return graph;
}
/// Create linear FG from Sequence
static GaussianFactorGraph::shared_ptr LinearGraph(const Sequence& sequence,
const SharedNoiseModel& model) {
NonlinearFactorGraph graph = NonlinearGraph(sequence, model);
Values values;
values.insert(0, Coefficients()); // does not matter
GaussianFactorGraph::shared_ptr gfg = graph.linearize(values);
return gfg;
}
/// Constructor
FourierDecomposition(const Sequence& sequence,
const SharedNoiseModel& model) {
GaussianFactorGraph::shared_ptr gfg = LinearGraph(sequence, model);
VectorValues solution = gfg->optimize();
c_ = solution.at(0);
}
/// Return Fourier coefficients
Coefficients coefficients() {
return c_;
}
};
}
#include <gtsam_unstable/nonlinear/expressionTesting.h>
#include <gtsam/base/Testable.h>
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
noiseModel::Diagonal::shared_ptr model = noiseModel::Unit::Create(1);
//******************************************************************************
TEST(BasisDecompositions, Fourier) {
Fourier<3> fx(0);
Eigen::Matrix<double, 1, 3> expectedH, actualH;
Vector3 c(1.5661, 1.2717, 1.2717);
expectedH = numericalDerivative11<double, Vector3>(
boost::bind(&Fourier<3>::operator(), fx, _1, boost::none), c);
EXPECT_DOUBLES_EQUAL(c[0]+c[1], fx(c,actualH), 1e-9);
EXPECT(assert_equal((Matrix)expectedH, actualH));
}
//******************************************************************************
TEST(BasisDecompositions, ManualFourier) {
// Create linear factor graph
GaussianFactorGraph g;
Key key(1);
Expression<Vector3> c(key);
Values values;
values.insert<Vector3>(key, Vector3::Zero()); // does not matter
for (size_t i = 0; i < 16; i++) {
double x = i * M_PI / 8, y = exp(sin(x) + cos(x));
// Manual JacobianFactor
Matrix A(1, 3);
A << 1, cos(x), sin(x);
Vector b(1);
b << y;
JacobianFactor f1(key, A, b);
g.add(f1);
// With ExpressionFactor
Expression<double> expression(Fourier<3>(x), c);
EXPECT_CORRECT_EXPRESSION_JACOBIANS(expression, values, 1e-5, 1e-9);
{
ExpressionFactor<double> f2(model, y, expression);
boost::shared_ptr<GaussianFactor> gf = f2.linearize(values);
boost::shared_ptr<JacobianFactor> jf = //
boost::dynamic_pointer_cast<JacobianFactor>(gf);
CHECK(jf);
EXPECT( assert_equal(f1, *jf, 1e-9));
}
{
ExpressionFactor<double> f2(model, y, expression);
boost::shared_ptr<GaussianFactor> gf = f2.linearize(values);
boost::shared_ptr<JacobianFactor> jf = //
boost::dynamic_pointer_cast<JacobianFactor>(gf);
CHECK(jf);
EXPECT( assert_equal(f1, *jf, 1e-9));
}
{
ExpressionFactor<double> f2(model, y, expression);
boost::shared_ptr<GaussianFactor> gf = f2.linearize(values);
boost::shared_ptr<JacobianFactor> jf = //
boost::dynamic_pointer_cast<JacobianFactor>(gf);
CHECK(jf);
EXPECT( assert_equal(f1, *jf, 1e-9));
}
{
ExpressionFactor<double> f2(model, y, expression);
boost::shared_ptr<GaussianFactor> gf = f2.linearize(values);
boost::shared_ptr<JacobianFactor> jf = //
boost::dynamic_pointer_cast<JacobianFactor>(gf);
CHECK(jf);
EXPECT( assert_equal(f1, *jf, 1e-9));
}
}
// Solve
VectorValues actual = g.optimize();
// Check
Vector3 expected(1.5661, 1.2717, 1.2717);
EXPECT(assert_equal((Vector) expected, actual.at(key),1e-4));
}
//******************************************************************************
TEST(BasisDecompositions, FourierDecomposition) {
// Create example sequence
Sequence sequence;
for (size_t i = 0; i < 16; i++) {
double x = i * M_PI / 8, y = exp(sin(x) + cos(x));
sequence[x] = y;
}
// Do Fourier Decomposition
FourierDecomposition actual(sequence, model);
// Check
Vector3 expected(1.5661, 1.2717, 1.2717);
EXPECT(assert_equal((Vector) expected, actual.coefficients(),1e-4));
}
//******************************************************************************
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
//******************************************************************************