gtsam/gtsam/discrete/DiscreteBayesNet.cpp

158 lines
5.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file DiscreteBayesNet.cpp
* @date Feb 15, 2011
* @author Duy-Nguyen Ta
* @author Frank Dellaert
*/
#include <gtsam/discrete/DiscreteBayesNet.h>
#include <gtsam/discrete/DiscreteConditional.h>
#include <gtsam/discrete/DiscreteMarginals.h>
#include <gtsam/inference/FactorGraph-inst.h>
namespace gtsam {
// Instantiate base class
template class FactorGraph<DiscreteConditional>;
/* ************************************************************************* */
bool DiscreteBayesNet::equals(const This& bn, double tol) const {
return Base::equals(bn, tol);
}
/* ************************************************************************* */
double DiscreteBayesNet::logProbability(const DiscreteValues& values) const {
// evaluate all conditionals and add
double result = 0.0;
for (const DiscreteConditional::shared_ptr& conditional : *this)
result += conditional->logProbability(values);
return result;
}
/* ************************************************************************* */
double DiscreteBayesNet::evaluate(const DiscreteValues& values) const {
// evaluate all conditionals and multiply
double result = 1.0;
for (const DiscreteConditional::shared_ptr& conditional : *this)
result *= (*conditional)(values);
return result;
}
/* ************************************************************************* */
DiscreteValues DiscreteBayesNet::sample(std::mt19937_64* rng) const {
DiscreteValues result;
return sample(result);
}
DiscreteValues DiscreteBayesNet::sample(DiscreteValues result,
std::mt19937_64* rng) const {
// sample each node in turn in topological sort order (parents first)
for (auto it = std::make_reverse_iterator(end());
it != std::make_reverse_iterator(begin()); ++it) {
const DiscreteConditional::shared_ptr& conditional = *it;
// Sample the conditional only if value for j not already in result
const Key j = conditional->firstFrontalKey();
if (result.count(j) == 0) {
conditional->sampleInPlace(&result, rng);
}
}
return result;
}
/* ************************************************************************* */
// The implementation is: build the entire joint into one factor and then prune.
// NOTE: This can be quite expensive *unless* the factors have already
// been pruned before. Another, possibly faster approach is branch and bound
// search to find the K-best leaves and then create a single pruned conditional.
DiscreteBayesNet DiscreteBayesNet::prune(
size_t maxNrLeaves, const std::optional<double>& marginalThreshold,
DiscreteValues* fixedValues) const {
// Multiply into one big conditional. NOTE: possibly quite expensive.
DiscreteConditional joint = this->joint();
// Prune the joint. NOTE: imperative and, again, possibly quite expensive.
DiscreteConditional pruned = joint;
pruned.prune(maxNrLeaves);
DiscreteValues deadModesValues;
// If we have a dead mode threshold and discrete variables left after pruning,
// then we run dead mode removal.
if (marginalThreshold && pruned.keys().size() > 0) {
DiscreteMarginals marginals(DiscreteFactorGraph{pruned});
for (auto dkey : pruned.discreteKeys()) {
const Vector probabilities = marginals.marginalProbabilities(dkey);
int index = -1;
auto threshold = (probabilities.array() > *marginalThreshold);
// If atleast 1 value is non-zero, then we can find the index
// Else if all are zero, index would be set to 0 which is incorrect
if (!threshold.isZero()) {
threshold.maxCoeff(&index);
}
if (index >= 0) {
deadModesValues.emplace(dkey.first, index);
}
}
// Remove the modes (imperative)
pruned.removeDiscreteModes(deadModesValues);
// Set the fixed values if requested.
if (fixedValues) {
*fixedValues = deadModesValues;
}
}
// Return the resulting DiscreteBayesNet.
DiscreteBayesNet result;
if (pruned.keys().size() > 0) result.push_back(pruned);
return result;
}
/* *********************************************************************** */
DiscreteConditional DiscreteBayesNet::joint() const {
DiscreteConditional joint;
for (const DiscreteConditional::shared_ptr& conditional : *this)
joint = joint * (*conditional);
return joint;
}
/* *********************************************************************** */
std::string DiscreteBayesNet::markdown(
const KeyFormatter& keyFormatter,
const DiscreteFactor::Names& names) const {
using std::endl;
std::stringstream ss;
ss << "`DiscreteBayesNet` of size " << size() << endl << endl;
for (const DiscreteConditional::shared_ptr& conditional : *this)
ss << conditional->markdown(keyFormatter, names) << endl;
return ss.str();
}
/* *********************************************************************** */
std::string DiscreteBayesNet::html(const KeyFormatter& keyFormatter,
const DiscreteFactor::Names& names) const {
using std::endl;
std::stringstream ss;
ss << "<div><p><tt>DiscreteBayesNet</tt> of size " << size() << "</p>";
for (const DiscreteConditional::shared_ptr& conditional : *this)
ss << conditional->html(keyFormatter, names) << endl;
return ss.str();
}
/* ************************************************************************* */
} // namespace gtsam