277 lines
9.7 KiB
C++
277 lines
9.7 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testGaussianFactor.cpp
|
|
* @brief Unit tests for Linear Factor
|
|
* @author Christian Potthast
|
|
* @author Frank Dellaert
|
|
**/
|
|
|
|
#include <boost/assign/std/list.hpp> // for operator +=
|
|
using namespace boost::assign;
|
|
|
|
#include <gtsam/base/TestableAssertions.h>
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
#include <gtsam/base/debug.h>
|
|
#include <gtsam/base/VerticalBlockMatrix.h>
|
|
#include <gtsam/inference/VariableSlots.h>
|
|
#include <gtsam/inference/VariableIndex.h>
|
|
#include <gtsam/linear/GaussianFactorGraph.h>
|
|
#include <gtsam/linear/GaussianConditional.h>
|
|
#include <gtsam/linear/GaussianBayesNet.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
static SharedDiagonal
|
|
sigma0_1 = noiseModel::Isotropic::Sigma(2,0.1), sigma_02 = noiseModel::Isotropic::Sigma(2,0.2),
|
|
constraintModel = noiseModel::Constrained::All(2);
|
|
|
|
/* ************************************************************************* */
|
|
TEST(GaussianFactorGraph, initialization) {
|
|
// Create empty graph
|
|
GaussianFactorGraph fg;
|
|
SharedDiagonal unit2 = noiseModel::Unit::Create(2);
|
|
|
|
fg +=
|
|
JacobianFactor(0, 10*eye(2), -1.0*ones(2), unit2),
|
|
JacobianFactor(0, -10*eye(2),1, 10*eye(2), (Vec(2) << 2.0, -1.0), unit2),
|
|
JacobianFactor(0, -5*eye(2), 2, 5*eye(2), (Vec(2) << 0.0, 1.0), unit2),
|
|
JacobianFactor(1, -5*eye(2), 2, 5*eye(2), (Vec(2) << -1.0, 1.5), unit2);
|
|
|
|
EXPECT_LONGS_EQUAL(4, (long)fg.size());
|
|
|
|
// Test sparse, which takes a vector and returns a matrix, used in MATLAB
|
|
// Note that this the augmented vector and the RHS is in column 7
|
|
Matrix expectedIJS = Matrix_(3,22,
|
|
1., 2., 1., 2., 3., 4., 3., 4., 3., 4., 5., 6., 5., 6., 5., 6., 7., 8., 7., 8., 7., 8.,
|
|
1., 2., 7., 7., 1., 2., 3., 4., 7., 7., 1., 2., 5., 6., 7., 7., 3., 4., 5., 6., 7., 7.,
|
|
10., 10., -1., -1., -10., -10., 10., 10., 2., -1., -5., -5., 5., 5., 0., 1., -5., -5., 5., 5., -1., 1.5
|
|
);
|
|
Matrix actualIJS = fg.sparseJacobian_();
|
|
EQUALITY(expectedIJS, actualIJS);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(GaussianFactorGraph, sparseJacobian) {
|
|
// Create factor graph:
|
|
// x1 x2 x3 x4 x5 b
|
|
// 1 2 3 0 0 4
|
|
// 5 6 7 0 0 8
|
|
// 9 10 0 11 12 13
|
|
// 0 0 0 14 15 16
|
|
|
|
// Expected - NOTE that we transpose this!
|
|
Matrix expected = Matrix_(16,3,
|
|
1., 1., 2.,
|
|
1., 2., 4.,
|
|
1., 3., 6.,
|
|
2., 1.,10.,
|
|
2., 2.,12.,
|
|
2., 3.,14.,
|
|
1., 6., 8.,
|
|
2., 6.,16.,
|
|
3., 1.,18.,
|
|
3., 2.,20.,
|
|
3., 4.,22.,
|
|
3., 5.,24.,
|
|
4., 4.,28.,
|
|
4., 5.,30.,
|
|
3., 6.,26.,
|
|
4., 6.,32.).transpose();
|
|
|
|
GaussianFactorGraph gfg;
|
|
SharedDiagonal model = noiseModel::Isotropic::Sigma(2, 0.5);
|
|
gfg.add(0, Matrix_(2,3, 1., 2., 3., 5., 6., 7.), (Vec(2) << 4., 8.), model);
|
|
gfg.add(0, Matrix_(2,3, 9.,10., 0., 0., 0., 0.), 1, Matrix_(2,2, 11., 12., 14., 15.), Vector_(2, 13.,16.), model);
|
|
|
|
Matrix actual = gfg.sparseJacobian_();
|
|
|
|
EXPECT(assert_equal(expected, actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(GaussianFactorGraph, matrices) {
|
|
// Create factor graph:
|
|
// x1 x2 x3 x4 x5 b
|
|
// 1 2 3 0 0 4
|
|
// 5 6 7 0 0 8
|
|
// 9 10 0 11 12 13
|
|
// 0 0 0 14 15 16
|
|
|
|
GaussianFactorGraph gfg;
|
|
SharedDiagonal model = noiseModel::Unit::Create(2);
|
|
gfg.add(0, Matrix_(2,3, 1., 2., 3., 5., 6., 7.), (Vec(2) << 4., 8.), model);
|
|
gfg.add(0, Matrix_(2,3, 9.,10., 0., 0., 0., 0.), 1, Matrix_(2,2, 11., 12., 14., 15.), Vector_(2, 13.,16.), model);
|
|
|
|
Matrix jacobian(4,6);
|
|
jacobian <<
|
|
1, 2, 3, 0, 0, 4,
|
|
5, 6, 7, 0, 0, 8,
|
|
9,10, 0,11,12,13,
|
|
0, 0, 0,14,15,16;
|
|
|
|
Matrix expectedJacobian = jacobian;
|
|
Matrix expectedHessian = jacobian.transpose() * jacobian;
|
|
Matrix expectedA = jacobian.leftCols(jacobian.cols()-1);
|
|
Vector expectedb = jacobian.col(jacobian.cols()-1);
|
|
Matrix expectedL = expectedA.transpose() * expectedA;
|
|
Vector expectedeta = expectedA.transpose() * expectedb;
|
|
|
|
Matrix actualJacobian = gfg.augmentedJacobian();
|
|
Matrix actualHessian = gfg.augmentedHessian();
|
|
Matrix actualA; Vector actualb; boost::tie(actualA,actualb) = gfg.jacobian();
|
|
Matrix actualL; Vector actualeta; boost::tie(actualL,actualeta) = gfg.hessian();
|
|
|
|
EXPECT(assert_equal(expectedJacobian, actualJacobian));
|
|
EXPECT(assert_equal(expectedHessian, actualHessian));
|
|
EXPECT(assert_equal(expectedA, actualA));
|
|
EXPECT(assert_equal(expectedb, actualb));
|
|
EXPECT(assert_equal(expectedL, actualL));
|
|
EXPECT(assert_equal(expectedeta, actualeta));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
static Key X1=2,X2=0,L1=1;
|
|
|
|
static GaussianFactorGraph createSimpleGaussianFactorGraph() {
|
|
GaussianFactorGraph fg;
|
|
SharedDiagonal unit2 = noiseModel::Unit::Create(2);
|
|
// linearized prior on x1: c[_x1_]+x1=0 i.e. x1=-c[_x1_]
|
|
fg += JacobianFactor(2, 10*eye(2), -1.0*ones(2), unit2);
|
|
// odometry between x1 and x2: x2-x1=[0.2;-0.1]
|
|
fg += JacobianFactor(2, -10*eye(2), 0, 10*eye(2), (Vec(2) << 2.0, -1.0), unit2);
|
|
// measurement between x1 and l1: l1-x1=[0.0;0.2]
|
|
fg += JacobianFactor(2, -5*eye(2), 1, 5*eye(2), (Vec(2) << 0.0, 1.0), unit2);
|
|
// measurement between x2 and l1: l1-x2=[-0.2;0.3]
|
|
fg += JacobianFactor(0, -5*eye(2), 1, 5*eye(2), (Vec(2) << -1.0, 1.5), unit2);
|
|
return fg;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactorGraph, gradient )
|
|
{
|
|
GaussianFactorGraph fg = createSimpleGaussianFactorGraph();
|
|
|
|
// Construct expected gradient
|
|
// 2*f(x) = 100*(x1+c[X(1)])^2 + 100*(x2-x1-[0.2;-0.1])^2 + 25*(l1-x1-[0.0;0.2])^2 + 25*(l1-x2-[-0.2;0.3])^2
|
|
// worked out: df/dx1 = 100*[0.1;0.1] + 100*[0.2;-0.1]) + 25*[0.0;0.2] = [10+20;10-10+5] = [30;5]
|
|
VectorValues expected = map_list_of
|
|
(1, (Vec(2) << 5.0, -12.5))
|
|
(2, (Vec(2) << 30.0, 5.0))
|
|
(0, (Vec(2) << -25.0, 17.5));
|
|
|
|
// Check the gradient at delta=0
|
|
VectorValues zero = VectorValues::Zero(expected);
|
|
VectorValues actual = fg.gradient(zero);
|
|
EXPECT(assert_equal(expected, actual));
|
|
|
|
// Check the gradient at the solution (should be zero)
|
|
VectorValues solution = fg.optimize();
|
|
VectorValues actual2 = fg.gradient(solution);
|
|
EXPECT(assert_equal(VectorValues::Zero(solution), actual2));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactorGraph, transposeMultiplication )
|
|
{
|
|
GaussianFactorGraph A = createSimpleGaussianFactorGraph();
|
|
|
|
Errors e; e +=
|
|
(Vec(2) << 0.0, 0.0),
|
|
(Vec(2) << 15.0, 0.0),
|
|
(Vec(2) << 0.0,-5.0),
|
|
(Vec(2) << -7.5,-5.0);
|
|
|
|
VectorValues expected;
|
|
expected.insert(1, (Vec(2) << -37.5,-50.0));
|
|
expected.insert(2, (Vec(2) << -150.0, 25.0));
|
|
expected.insert(0, (Vec(2) << 187.5, 25.0));
|
|
|
|
VectorValues actual = A.transposeMultiply(e);
|
|
EXPECT(assert_equal(expected, actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(GaussianFactorGraph, eliminate_empty )
|
|
{
|
|
// eliminate an empty factor
|
|
GaussianFactorGraph gfg;
|
|
gfg.add(JacobianFactor());
|
|
GaussianBayesNet::shared_ptr actualBN;
|
|
GaussianFactorGraph::shared_ptr remainingGFG;
|
|
boost::tie(actualBN, remainingGFG) = gfg.eliminatePartialSequential(Ordering());
|
|
|
|
// expected Bayes net is empty
|
|
GaussianBayesNet expectedBN;
|
|
|
|
// expected remaining graph should be the same as the original, still containing the empty factor
|
|
GaussianFactorGraph expectedLF = gfg;
|
|
|
|
// check if the result matches
|
|
EXPECT(assert_equal(*actualBN, expectedBN));
|
|
EXPECT(assert_equal(*remainingGFG, expectedLF));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactorGraph, multiplyHessian )
|
|
{
|
|
GaussianFactorGraph A = createSimpleGaussianFactorGraph();
|
|
|
|
VectorValues x = map_list_of
|
|
(0, (Vec(2) << 1,2))
|
|
(1, (Vec(2) << 3,4))
|
|
(2, (Vec(2) << 5,6));
|
|
|
|
VectorValues expected;
|
|
expected.insert(0, (Vec(2) << -450, -450));
|
|
expected.insert(1, (Vec(2) << 0, 0));
|
|
expected.insert(2, (Vec(2) << 950, 1050));
|
|
|
|
VectorValues actual = A.multiplyHessian(x);
|
|
EXPECT(assert_equal(expected, actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
static GaussianFactorGraph createGaussianFactorGraphWithHessianFactor() {
|
|
GaussianFactorGraph fg = createSimpleGaussianFactorGraph();
|
|
fg += HessianFactor(1, 2, 100*ones(2,2), 200*ones(2,2), (Vec(2) << 0.0, 1.0),
|
|
400*ones(2,2), (Vec(2) << 1.0, 1.0), 0.0);
|
|
return fg;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactorGraph, multiplyHessian2 )
|
|
{
|
|
GaussianFactorGraph A = createGaussianFactorGraphWithHessianFactor();
|
|
|
|
VectorValues x = map_list_of
|
|
(0, (Vec(2) << 1,2))
|
|
(1, (Vec(2) << 3,4))
|
|
(2, (Vec(2) << 5,6));
|
|
|
|
// expected from matlab: -450 -450 2900 2900 6750 6850
|
|
VectorValues expected;
|
|
expected.insert(0, (Vec(2) << -450, -450));
|
|
expected.insert(1, (Vec(2) << 2900, 2900));
|
|
expected.insert(2, (Vec(2) << 6750, 6850));
|
|
|
|
VectorValues actual = A.multiplyHessian(x);
|
|
EXPECT(assert_equal(expected, actual));
|
|
}
|
|
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
|
|
/* ************************************************************************* */
|