gtsam/wrap/Module.cpp

744 lines
30 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Module.ccp
* @author Frank Dellaert
* @author Alex Cunningham
* @author Andrew Melim
* @author Richard Roberts
**/
#include "Module.h"
#include "FileWriter.h"
#include "TypeAttributesTable.h"
#include "utilities.h"
//#define BOOST_SPIRIT_DEBUG
#include "spirit_actors.h"
#include <boost/spirit/include/classic_confix.hpp>
#include <boost/spirit/include/classic_clear_actor.hpp>
#include <boost/spirit/include/classic_insert_at_actor.hpp>
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-variable"
#endif
#include <boost/lambda/bind.hpp>
#include <boost/lambda/lambda.hpp>
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
#include <boost/lambda/construct.hpp>
#include <boost/foreach.hpp>
#include <boost/filesystem.hpp>
#include <boost/lexical_cast.hpp>
#include <iostream>
#include <algorithm>
using namespace std;
using namespace wrap;
using namespace BOOST_SPIRIT_CLASSIC_NS;
namespace bl = boost::lambda;
namespace fs = boost::filesystem;
typedef rule<BOOST_SPIRIT_CLASSIC_NS::phrase_scanner_t> Rule;
/* ************************************************************************* */
// We parse an interface file into a Module object.
// The grammar is defined using the boost/spirit combinatorial parser.
// For example, str_p("const") parses the string "const", and the >>
// operator creates a sequence parser. The grammar below, composed of rules
// and with start rule [class_p], doubles as the specs for our interface files.
/* ************************************************************************* */
/* ************************************************************************* */
void handle_possible_template(vector<Class>& classes, const Class& cls, const string& templateArgument, const vector<vector<string> >& instantiations) {
if(instantiations.empty()) {
classes.push_back(cls);
} else {
vector<Class> classInstantiations = cls.expandTemplate(templateArgument, instantiations);
BOOST_FOREACH(const Class& c, classInstantiations) {
classes.push_back(c);
}
}
}
/* ************************************************************************* */
Module::Module(const std::string& moduleName, bool enable_verbose)
: name(moduleName), verbose(enable_verbose)
{
}
/* ************************************************************************* */
Module::Module(const string& interfacePath,
const string& moduleName, bool enable_verbose)
: name(moduleName), verbose(enable_verbose)
{
// read interface file
string interfaceFile = interfacePath + "/" + moduleName + ".h";
string contents = file_contents(interfaceFile);
// execute parsing
parseMarkup(contents);
}
/* ************************************************************************* */
void Module::parseMarkup(const std::string& data) {
// these variables will be imperatively updated to gradually build [cls]
// The one with postfix 0 are used to reset the variables after parse.
string methodName, methodName0;
bool isConst, isConst0 = false;
ReturnValue retVal0, retVal;
Argument arg0, arg;
ArgumentList args0, args;
vector<string> arg_dup; ///keep track of duplicates
Constructor constructor0(verbose), constructor(verbose);
Deconstructor deconstructor0(verbose), deconstructor(verbose);
StaticMethod static_method0(verbose), static_method(verbose);
Class cls0(verbose),cls(verbose);
GlobalFunction globalFunc0(verbose), globalFunc(verbose);
ForwardDeclaration fwDec0, fwDec;
vector<string> namespaces, /// current namespace tag
namespaces_return; /// namespace for current return type
string templateArgument;
vector<string> templateInstantiationNamespace;
vector<vector<string> > templateInstantiations;
TemplateInstantiationTypedef singleInstantiation, singleInstantiation0;
string include_path = "";
const string null_str = "";
//----------------------------------------------------------------------------
// Grammar with actions that build the Class object. Actions are
// defined within the square brackets [] and are executed whenever a
// rule is successfully parsed. Define BOOST_SPIRIT_DEBUG to debug.
// The grammar is allows a very restricted C++ header
// lexeme_d turns off white space skipping
// http://www.boost.org/doc/libs/1_37_0/libs/spirit/classic/doc/directives.html
// ----------------------------------------------------------------------------
Rule comments_p = comment_p("/*", "*/") | comment_p("//", eol_p);
Rule basisType_p =
(str_p("string") | "bool" | "size_t" | "int" | "double" | "char" | "unsigned char");
Rule keywords_p =
(str_p("const") | "static" | "namespace" | "void" | basisType_p);
Rule eigenType_p =
(str_p("Vector") | "Matrix");
//Rule for STL Containers (class names are lowercase)
Rule stlType_p = (str_p("vector") | "list");
Rule className_p = (lexeme_d[upper_p >> *(alnum_p | '_')] - eigenType_p - keywords_p) | stlType_p;
Rule namespace_name_p = lexeme_d[lower_p >> *(alnum_p | '_')] - keywords_p;
Rule namespace_arg_p = namespace_name_p[push_back_a(arg.namespaces)] >> str_p("::");
Rule argEigenType_p =
eigenType_p[assign_a(arg.type)];
Rule eigenRef_p =
!str_p("const") [assign_a(arg.is_const,true)] >>
eigenType_p [assign_a(arg.type)] >>
ch_p('&') [assign_a(arg.is_ref,true)];
Rule classArg_p =
!str_p("const") [assign_a(arg.is_const,true)] >>
*namespace_arg_p >>
className_p[assign_a(arg.type)] >>
!ch_p('&')[assign_a(arg.is_ref,true)];
Rule name_p = lexeme_d[alpha_p >> *(alnum_p | '_')];
Rule classParent_p =
*(namespace_name_p[push_back_a(cls.qualifiedParent)] >> str_p("::")) >>
className_p[push_back_a(cls.qualifiedParent)];
Rule templateInstantiation_p =
(*(namespace_name_p[push_back_a(templateInstantiationNamespace)] >> str_p("::")) >>
className_p[push_back_a(templateInstantiationNamespace)])
[push_back_a(templateInstantiations, templateInstantiationNamespace)]
[clear_a(templateInstantiationNamespace)];
Rule templateInstantiations_p =
(str_p("template") >>
'<' >> name_p[assign_a(templateArgument)] >> '=' >> '{' >>
!(templateInstantiation_p >> *(',' >> templateInstantiation_p)) >>
'}' >> '>')
[push_back_a(cls.templateArgs, templateArgument)];
Rule templateSingleInstantiationArg_p =
(*(namespace_name_p[push_back_a(templateInstantiationNamespace)] >> str_p("::")) >>
className_p[push_back_a(templateInstantiationNamespace)])
[push_back_a(singleInstantiation.typeList, templateInstantiationNamespace)]
[clear_a(templateInstantiationNamespace)];
Rule templateSingleInstantiation_p =
(str_p("typedef") >>
*(namespace_name_p[push_back_a(singleInstantiation.classNamespaces)] >> str_p("::")) >>
className_p[assign_a(singleInstantiation.className)] >>
'<' >> templateSingleInstantiationArg_p >> *(',' >> templateSingleInstantiationArg_p) >>
'>' >>
className_p[assign_a(singleInstantiation.name)] >>
';')
[assign_a(singleInstantiation.namespaces, namespaces)]
[push_back_a(templateInstantiationTypedefs, singleInstantiation)]
[assign_a(singleInstantiation, singleInstantiation0)];
Rule templateList_p =
(str_p("template") >>
'<' >> name_p[push_back_a(cls.templateArgs)] >> *(',' >> name_p[push_back_a(cls.templateArgs)]) >>
'>');
// NOTE: allows for pointers to all types
Rule argument_p =
((basisType_p[assign_a(arg.type)] | argEigenType_p | eigenRef_p | classArg_p)
>> !ch_p('*')[assign_a(arg.is_ptr,true)]
>> name_p[assign_a(arg.name)])
[push_back_a(args, arg)]
[assign_a(arg,arg0)];
Rule argumentList_p = !argument_p >> * (',' >> argument_p);
Rule constructor_p =
(className_p >> '(' >> argumentList_p >> ')' >> ';' >> !comments_p)
[push_back_a(constructor.args_list, args)]
[assign_a(args,args0)];
//[assign_a(constructor.args,args)]
//[assign_a(constructor.name,cls.name)]
//[push_back_a(cls.constructors, constructor)]
//[assign_a(constructor,constructor0)];
Rule namespace_ret_p = namespace_name_p[push_back_a(namespaces_return)] >> str_p("::");
// HACK: use const values instead of using enums themselves - somehow this doesn't result in values getting assigned to gibberish
static const ReturnValue::return_category RETURN_EIGEN = ReturnValue::EIGEN;
static const ReturnValue::return_category RETURN_BASIS = ReturnValue::BASIS;
static const ReturnValue::return_category RETURN_CLASS = ReturnValue::CLASS;
static const ReturnValue::return_category RETURN_VOID = ReturnValue::VOID;
Rule returnType1_p =
(basisType_p[assign_a(retVal.type1)][assign_a(retVal.category1, RETURN_BASIS)]) |
((*namespace_ret_p)[assign_a(retVal.namespaces1, namespaces_return)][clear_a(namespaces_return)]
>> (className_p[assign_a(retVal.type1)][assign_a(retVal.category1, RETURN_CLASS)]) >>
!ch_p('*')[assign_a(retVal.isPtr1,true)]) |
(eigenType_p[assign_a(retVal.type1)][assign_a(retVal.category1, RETURN_EIGEN)]);
Rule returnType2_p =
(basisType_p[assign_a(retVal.type2)][assign_a(retVal.category2, RETURN_BASIS)]) |
((*namespace_ret_p)[assign_a(retVal.namespaces2, namespaces_return)][clear_a(namespaces_return)]
>> (className_p[assign_a(retVal.type2)][assign_a(retVal.category2, RETURN_CLASS)]) >>
!ch_p('*') [assign_a(retVal.isPtr2,true)]) |
(eigenType_p[assign_a(retVal.type2)][assign_a(retVal.category2, RETURN_EIGEN)]);
Rule pair_p =
(str_p("pair") >> '<' >> returnType1_p >> ',' >> returnType2_p >> '>')
[assign_a(retVal.isPair,true)];
Rule void_p = str_p("void")[assign_a(retVal.type1)][assign_a(retVal.category1, RETURN_VOID)];
Rule returnType_p = void_p | pair_p | returnType1_p;
Rule methodName_p = lexeme_d[(upper_p | lower_p) >> *(alnum_p | '_')];
Rule method_p =
(returnType_p >> methodName_p[assign_a(methodName)] >>
'(' >> argumentList_p >> ')' >>
!str_p("const")[assign_a(isConst,true)] >> ';' >> *comments_p)
[bl::bind(&Method::addOverload,
bl::var(cls.methods)[bl::var(methodName)],
verbose,
bl::var(isConst),
bl::var(methodName),
bl::var(args),
bl::var(retVal))]
[assign_a(isConst,isConst0)]
[assign_a(methodName,methodName0)]
[assign_a(args,args0)]
[assign_a(retVal,retVal0)];
Rule staticMethodName_p = lexeme_d[(upper_p | lower_p) >> *(alnum_p | '_')];
Rule static_method_p =
(str_p("static") >> returnType_p >> staticMethodName_p[assign_a(methodName)] >>
'(' >> argumentList_p >> ')' >> ';' >> *comments_p)
[bl::bind(&StaticMethod::addOverload,
bl::var(cls.static_methods)[bl::var(methodName)],
verbose,
bl::var(methodName),
bl::var(args),
bl::var(retVal))]
[assign_a(methodName,methodName0)]
[assign_a(args,args0)]
[assign_a(retVal,retVal0)];
Rule functions_p = constructor_p | method_p | static_method_p;
Rule class_p =
(str_p("")[assign_a(cls,cls0)])
>> (!(templateInstantiations_p | templateList_p)
>> !(str_p("virtual")[assign_a(cls.isVirtual, true)])
>> str_p("class")
>> className_p[assign_a(cls.name)]
>> ((':' >> classParent_p >> '{') | '{')
>> *(functions_p | comments_p)
>> str_p("};"))
[assign_a(constructor.name, cls.name)]
[assign_a(cls.constructor, constructor)]
[assign_a(cls.namespaces, namespaces)]
[assign_a(deconstructor.name,cls.name)]
[assign_a(cls.deconstructor, deconstructor)]
[bl::bind(&handle_possible_template, bl::var(classes), bl::var(cls), bl::var(templateArgument), bl::var(templateInstantiations))]
[assign_a(deconstructor,deconstructor0)]
[assign_a(constructor, constructor0)]
[assign_a(cls,cls0)]
[clear_a(templateArgument)]
[clear_a(templateInstantiations)];
Rule global_function_p =
(returnType_p >> staticMethodName_p[assign_a(methodName)] >>
'(' >> argumentList_p >> ')' >> ';' >> *comments_p)
[bl::bind(&GlobalFunction::addOverload,
bl::var(global_functions)[bl::var(methodName)],
verbose,
bl::var(methodName),
bl::var(args),
bl::var(retVal),
bl::var(namespaces))]
[assign_a(methodName,methodName0)]
[assign_a(args,args0)]
[assign_a(retVal,retVal0)];
Rule include_p = str_p("#include") >> ch_p('<') >> (*(anychar_p - '>'))[push_back_a(includes)] >> ch_p('>');
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wuninitialized"
#endif
Rule namespace_def_p =
(str_p("namespace")
>> namespace_name_p[push_back_a(namespaces)]
>> ch_p('{')
>> *(include_p | class_p | templateSingleInstantiation_p | global_function_p | namespace_def_p | comments_p)
>> ch_p('}'))
[pop_a(namespaces)];
#ifdef __clang__
#pragma clang diagnostic pop
#endif
Rule forward_declaration_p =
!(str_p("virtual")[assign_a(fwDec.isVirtual, true)])
>> str_p("class")
>> (*(namespace_name_p >> str_p("::")) >> className_p)[assign_a(fwDec.name)]
>> ch_p(';')
[push_back_a(forward_declarations, fwDec)]
[assign_a(fwDec, fwDec0)];
Rule module_content_p = comments_p | include_p | class_p | templateSingleInstantiation_p | forward_declaration_p | global_function_p | namespace_def_p;
Rule module_p = *module_content_p >> !end_p;
//----------------------------------------------------------------------------
// for debugging, define BOOST_SPIRIT_DEBUG
# ifdef BOOST_SPIRIT_DEBUG
BOOST_SPIRIT_DEBUG_NODE(className_p);
BOOST_SPIRIT_DEBUG_NODE(classPtr_p);
BOOST_SPIRIT_DEBUG_NODE(classRef_p);
BOOST_SPIRIT_DEBUG_NODE(basisType_p);
BOOST_SPIRIT_DEBUG_NODE(name_p);
BOOST_SPIRIT_DEBUG_NODE(argument_p);
BOOST_SPIRIT_DEBUG_NODE(argumentList_p);
BOOST_SPIRIT_DEBUG_NODE(constructor_p);
BOOST_SPIRIT_DEBUG_NODE(returnType1_p);
BOOST_SPIRIT_DEBUG_NODE(returnType2_p);
BOOST_SPIRIT_DEBUG_NODE(pair_p);
BOOST_SPIRIT_DEBUG_NODE(void_p);
BOOST_SPIRIT_DEBUG_NODE(returnType_p);
BOOST_SPIRIT_DEBUG_NODE(methodName_p);
BOOST_SPIRIT_DEBUG_NODE(method_p);
BOOST_SPIRIT_DEBUG_NODE(class_p);
BOOST_SPIRIT_DEBUG_NODE(namespace_def_p);
BOOST_SPIRIT_DEBUG_NODE(module_p);
# endif
//----------------------------------------------------------------------------
// and parse contents
parse_info<const char*> info = parse(data.c_str(), module_p, space_p);
if(!info.full) {
printf("parsing stopped at \n%.20s\n",info.stop);
cout << "Stopped near:\n"
"class '" << cls.name << "'\n"
"method '" << methodName << "'\n"
"argument '" << arg.name << "'" << endl;
throw ParseFailed((int)info.length);
}
// Post-process classes for serialization markers
BOOST_FOREACH(Class& cls, classes) {
Class::Methods::iterator serializable_it = cls.methods.find("serializable");
if (serializable_it != cls.methods.end()) {
#ifndef WRAP_DISABLE_SERIALIZE
cls.isSerializable = true;
#else
cout << "Ignoring serializable() flag in class " << cls.name << endl;
#endif
cls.methods.erase(serializable_it);
}
Class::Methods::iterator serialize_it = cls.methods.find("serialize");
if (serialize_it != cls.methods.end()) {
#ifndef WRAP_DISABLE_SERIALIZE
cls.isSerializable = true;
cls.hasSerialization= true;
#else
cout << "Ignoring serialize() flag in class " << cls.name << endl;
#endif
cls.methods.erase(serialize_it);
}
}
// Explicitly add methods to the classes from parents so it shows in documentation
BOOST_FOREACH(Class& cls, classes)
{
map<string, Method> inhereted = appendInheretedMethods(cls, classes);
cls.methods.insert(inhereted.begin(), inhereted.end());
}
}
/* ************************************************************************* */
template<class T>
void verifyArguments(const vector<string>& validArgs, const map<string,T>& vt) {
typedef typename map<string,T>::value_type Name_Method;
BOOST_FOREACH(const Name_Method& name_method, vt) {
const T& t = name_method.second;
BOOST_FOREACH(const ArgumentList& argList, t.argLists) {
BOOST_FOREACH(Argument arg, argList) {
string fullType = arg.qualifiedType("::");
if(find(validArgs.begin(), validArgs.end(), fullType)
== validArgs.end())
throw DependencyMissing(fullType, t.name);
}
}
}
}
/* ************************************************************************* */
template<class T>
void verifyReturnTypes(const vector<string>& validtypes, const map<string,T>& vt) {
typedef typename map<string,T>::value_type Name_Method;
BOOST_FOREACH(const Name_Method& name_method, vt) {
const T& t = name_method.second;
BOOST_FOREACH(const ReturnValue& retval, t.returnVals) {
if (find(validtypes.begin(), validtypes.end(), retval.qualifiedType1("::")) == validtypes.end())
throw DependencyMissing(retval.qualifiedType1("::"), t.name);
if (retval.isPair && find(validtypes.begin(), validtypes.end(), retval.qualifiedType2("::")) == validtypes.end())
throw DependencyMissing(retval.qualifiedType2("::"), t.name);
}
}
}
/* ************************************************************************* */
void Module::generateIncludes(FileWriter& file) const {
// collect includes
vector<string> all_includes(includes);
// sort and remove duplicates
sort(all_includes.begin(), all_includes.end());
vector<string>::const_iterator last_include = unique(all_includes.begin(), all_includes.end());
vector<string>::const_iterator it = all_includes.begin();
// add includes to file
for (; it != last_include; ++it)
file.oss << "#include <" << *it << ">" << endl;
file.oss << "\n";
}
/* ************************************************************************* */
void Module::matlab_code(const string& toolboxPath, const string& headerPath) const {
fs::create_directories(toolboxPath);
// Expand templates - This is done first so that template instantiations are
// counted in the list of valid types, have their attributes and dependencies
// checked, etc.
vector<Class> expandedClasses = ExpandTypedefInstantiations(classes, templateInstantiationTypedefs);
// Dependency check list
vector<string> validTypes = GenerateValidTypes(expandedClasses, forward_declarations);
// Check that all classes have been defined somewhere
verifyArguments<GlobalFunction>(validTypes, global_functions);
verifyReturnTypes<GlobalFunction>(validTypes, global_functions);
bool hasSerialiable = false;
BOOST_FOREACH(const Class& cls, expandedClasses) {
hasSerialiable |= cls.isSerializable;
// verify all of the function arguments
//TODO:verifyArguments<ArgumentList>(validTypes, cls.constructor.args_list);
verifyArguments<StaticMethod>(validTypes, cls.static_methods);
verifyArguments<Method>(validTypes, cls.methods);
// verify function return types
verifyReturnTypes<StaticMethod>(validTypes, cls.static_methods);
verifyReturnTypes<Method>(validTypes, cls.methods);
// verify parents
if(!cls.qualifiedParent.empty() && std::find(validTypes.begin(), validTypes.end(), wrap::qualifiedName("::", cls.qualifiedParent)) == validTypes.end())
throw DependencyMissing(wrap::qualifiedName("::", cls.qualifiedParent), cls.qualifiedName("::"));
}
// Create type attributes table and check validity
TypeAttributesTable typeAttributes;
typeAttributes.addClasses(expandedClasses);
typeAttributes.addForwardDeclarations(forward_declarations);
typeAttributes.checkValidity(expandedClasses);
// create the unified .cpp switch file
const string wrapperName = name + "_wrapper";
string wrapperFileName = toolboxPath + "/" + wrapperName + ".cpp";
FileWriter wrapperFile(wrapperFileName, verbose, "//");
wrapperFile.oss << "#include <wrap/matlab.h>\n";
wrapperFile.oss << "#include <map>\n";
wrapperFile.oss << "#include <boost/foreach.hpp>\n";
wrapperFile.oss << "\n";
// Include boost.serialization archive headers before other class headers
if (hasSerialiable) {
wrapperFile.oss << "#include <boost/serialization/export.hpp>\n";
wrapperFile.oss << "#include <boost/archive/text_iarchive.hpp>\n";
wrapperFile.oss << "#include <boost/archive/text_oarchive.hpp>\n\n";
}
// Generate includes while avoiding redundant includes
generateIncludes(wrapperFile);
// create typedef classes - we put this at the top of the wrap file so that collectors and method arguments can use these typedefs
BOOST_FOREACH(const Class& cls, expandedClasses) {
if(!cls.typedefName.empty())
wrapperFile.oss << cls.getTypedef() << "\n";
}
wrapperFile.oss << "\n";
// Generate boost.serialization export flags (needs typedefs from above)
if (hasSerialiable) {
BOOST_FOREACH(const Class& cls, expandedClasses) {
if(cls.isSerializable)
wrapperFile.oss << cls.getSerializationExport() << "\n";
}
wrapperFile.oss << "\n";
}
// Generate collectors and cleanup function to be called from mexAtExit
WriteCollectorsAndCleanupFcn(wrapperFile, name, expandedClasses);
// generate RTTI registry (for returning derived-most types)
WriteRTTIRegistry(wrapperFile, name, expandedClasses);
vector<string> functionNames; // Function names stored by index for switch
// create proxy class and wrapper code
BOOST_FOREACH(const Class& cls, expandedClasses) {
cls.matlab_proxy(toolboxPath, wrapperName, typeAttributes, wrapperFile, functionNames);
}
// create matlab files and wrapper code for global functions
BOOST_FOREACH(const GlobalFunctions::value_type& p, global_functions) {
p.second.matlab_proxy(toolboxPath, wrapperName, typeAttributes, wrapperFile, functionNames);
}
// finish wrapper file
wrapperFile.oss << "\n";
finish_wrapper(wrapperFile, functionNames);
wrapperFile.emit(true);
}
/* ************************************************************************* */
map<string, Method> Module::appendInheretedMethods(const Class& cls, const vector<Class>& classes)
{
map<string, Method> methods;
if(!cls.qualifiedParent.empty())
{
//Find Class
BOOST_FOREACH(const Class& parent, classes) {
//We found the class for our parent
if(parent.name == cls.qualifiedParent.back())
{
Methods inhereted = appendInheretedMethods(parent, classes);
methods.insert(inhereted.begin(), inhereted.end());
}
}
} else {
methods.insert(cls.methods.begin(), cls.methods.end());
}
return methods;
}
/* ************************************************************************* */
void Module::finish_wrapper(FileWriter& file, const std::vector<std::string>& functionNames) const {
file.oss << "void mexFunction(int nargout, mxArray *out[], int nargin, const mxArray *in[])\n";
file.oss << "{\n";
file.oss << " mstream mout;\n"; // Send stdout to MATLAB console
file.oss << " std::streambuf *outbuf = std::cout.rdbuf(&mout);\n\n";
file.oss << " _" << name << "_RTTIRegister();\n\n";
file.oss << " int id = unwrap<int>(in[0]);\n\n";
file.oss << " try {\n";
file.oss << " switch(id) {\n";
for(size_t id = 0; id < functionNames.size(); ++id) {
file.oss << " case " << id << ":\n";
file.oss << " " << functionNames[id] << "(nargout, out, nargin-1, in+1);\n";
file.oss << " break;\n";
}
file.oss << " }\n";
file.oss << " } catch(const std::exception& e) {\n";
file.oss << " mexErrMsgTxt((\"Exception from gtsam:\\n\" + std::string(e.what()) + \"\\n\").c_str());\n";
file.oss << " }\n";
file.oss << "\n";
file.oss << " std::cout.rdbuf(outbuf);\n"; // Restore cout
file.oss << "}\n";
}
/* ************************************************************************* */
vector<Class> Module::ExpandTypedefInstantiations(const vector<Class>& classes, const vector<TemplateInstantiationTypedef> instantiations) {
vector<Class> expandedClasses = classes;
BOOST_FOREACH(const TemplateInstantiationTypedef& inst, instantiations) {
// Add the new class to the list
expandedClasses.push_back(inst.findAndExpand(classes));
}
// Remove all template classes
for(size_t i = 0; i < expandedClasses.size(); ++i)
if(!expandedClasses[size_t(i)].templateArgs.empty()) {
expandedClasses.erase(expandedClasses.begin() + size_t(i));
-- i;
}
return expandedClasses;
}
/* ************************************************************************* */
vector<string> Module::GenerateValidTypes(const vector<Class>& classes, const vector<ForwardDeclaration> forwardDeclarations) {
vector<string> validTypes;
BOOST_FOREACH(const ForwardDeclaration& fwDec, forwardDeclarations) {
validTypes.push_back(fwDec.name);
}
validTypes.push_back("void");
validTypes.push_back("string");
validTypes.push_back("int");
validTypes.push_back("bool");
validTypes.push_back("char");
validTypes.push_back("unsigned char");
validTypes.push_back("size_t");
validTypes.push_back("double");
validTypes.push_back("Vector");
validTypes.push_back("Matrix");
//Create a list of parsed classes for dependency checking
BOOST_FOREACH(const Class& cls, classes) {
validTypes.push_back(cls.qualifiedName("::"));
}
return validTypes;
}
/* ************************************************************************* */
void Module::WriteCollectorsAndCleanupFcn(FileWriter& wrapperFile, const std::string& moduleName, const std::vector<Class>& classes) {
// Generate all collectors
BOOST_FOREACH(const Class& cls, classes) {
const string matlabUniqueName = cls.qualifiedName(),
cppName = cls.qualifiedName("::");
wrapperFile.oss << "typedef std::set<boost::shared_ptr<" << cppName << ">*> "
<< "Collector_" << matlabUniqueName << ";\n";
wrapperFile.oss << "static Collector_" << matlabUniqueName <<
" collector_" << matlabUniqueName << ";\n";
}
// generate mexAtExit cleanup function
wrapperFile.oss <<
"\nvoid _deleteAllObjects()\n"
"{\n"
" mstream mout;\n" // Send stdout to MATLAB console
" std::streambuf *outbuf = std::cout.rdbuf(&mout);\n\n"
" bool anyDeleted = false;\n";
BOOST_FOREACH(const Class& cls, classes) {
const string matlabUniqueName = cls.qualifiedName();
const string cppName = cls.qualifiedName("::");
const string collectorType = "Collector_" + matlabUniqueName;
const string collectorName = "collector_" + matlabUniqueName;
// The extra curly-braces around the for loops work around a limitation in MSVC (existing
// since 2005!) preventing more than 248 blocks.
wrapperFile.oss <<
" { for(" << collectorType << "::iterator iter = " << collectorName << ".begin();\n"
" iter != " << collectorName << ".end(); ) {\n"
" delete *iter;\n"
" " << collectorName << ".erase(iter++);\n"
" anyDeleted = true;\n"
" } }\n";
}
wrapperFile.oss <<
" if(anyDeleted)\n"
" cout <<\n"
" \"WARNING: Wrap modules with variables in the workspace have been reloaded due to\\n\"\n"
" \"calling destructors, call 'clear all' again if you plan to now recompile a wrap\\n\"\n"
" \"module, so that your recompiled module is used instead of the old one.\" << endl;\n"
" std::cout.rdbuf(outbuf);\n" // Restore cout
"}\n\n";
}
/* ************************************************************************* */
void Module::WriteRTTIRegistry(FileWriter& wrapperFile, const std::string& moduleName, const std::vector<Class>& classes) {
wrapperFile.oss <<
"void _" << moduleName << "_RTTIRegister() {\n"
" const mxArray *alreadyCreated = mexGetVariablePtr(\"global\", \"gtsam_" + moduleName + "_rttiRegistry_created\");\n"
" if(!alreadyCreated) {\n"
" std::map<std::string, std::string> types;\n";
BOOST_FOREACH(const Class& cls, classes) {
if(cls.isVirtual)
wrapperFile.oss <<
" types.insert(std::make_pair(typeid(" << cls.qualifiedName("::") << ").name(), \"" << cls.qualifiedName(".") << "\"));\n";
}
wrapperFile.oss << "\n";
wrapperFile.oss <<
" mxArray *registry = mexGetVariable(\"global\", \"gtsamwrap_rttiRegistry\");\n"
" if(!registry)\n"
" registry = mxCreateStructMatrix(1, 1, 0, NULL);\n"
" typedef std::pair<std::string, std::string> StringPair;\n"
" BOOST_FOREACH(const StringPair& rtti_matlab, types) {\n"
" int fieldId = mxAddField(registry, rtti_matlab.first.c_str());\n"
" if(fieldId < 0)\n"
" mexErrMsgTxt(\"gtsam wrap: Error indexing RTTI types, inheritance will not work correctly\");\n"
" mxArray *matlabName = mxCreateString(rtti_matlab.second.c_str());\n"
" mxSetFieldByNumber(registry, 0, fieldId, matlabName);\n"
" }\n"
" if(mexPutVariable(\"global\", \"gtsamwrap_rttiRegistry\", registry) != 0)\n"
" mexErrMsgTxt(\"gtsam wrap: Error indexing RTTI types, inheritance will not work correctly\");\n"
" mxDestroyArray(registry);\n"
" \n"
" mxArray *newAlreadyCreated = mxCreateNumericMatrix(0, 0, mxINT8_CLASS, mxREAL);\n"
" if(mexPutVariable(\"global\", \"gtsam_" + moduleName + "_rttiRegistry_created\", newAlreadyCreated) != 0)\n"
" mexErrMsgTxt(\"gtsam wrap: Error indexing RTTI types, inheritance will not work correctly\");\n"
" mxDestroyArray(newAlreadyCreated);\n"
" }\n"
"}\n"
"\n";
}
/* ************************************************************************* */