gtsam/cpp/ISAM2-inl.h

251 lines
8.9 KiB
C++

/**
* @file ISAM2-inl.h
* @brief Incremental update functionality (ISAM2) for BayesTree, with fluid relinearization.
* @author Michael Kaess
*/
#include <boost/foreach.hpp>
#include <boost/assign/std/list.hpp> // for operator +=
using namespace boost::assign;
#include <set>
#include "NonlinearFactorGraph-inl.h"
#include "GaussianFactor.h"
#include "VectorConfig.h"
#include "Conditional.h"
#include "BayesTree-inl.h"
#include "ISAM2.h"
namespace gtsam {
using namespace std;
// from inference-inl.h - need to additionally return the newly created factor for caching
boost::shared_ptr<GaussianConditional> _eliminateOne(FactorGraph<GaussianFactor>& graph, CachedFactors& cached, const Symbol& key) {
// combine the factors of all nodes connected to the variable to be eliminated
// if no factors are connected to key, returns an empty factor
boost::shared_ptr<GaussianFactor> joint_factor = removeAndCombineFactors(graph,key);
// eliminate that joint factor
boost::shared_ptr<GaussianFactor> factor;
boost::shared_ptr<GaussianConditional> conditional;
boost::tie(conditional, factor) = joint_factor->eliminate(key);
// ADDED: remember the intermediate result to be able to later restart computation in the middle
cached[key] = factor;
// add new factor on separator back into the graph
if (!factor->empty()) graph.push_back(factor);
// return the conditional Gaussian
return conditional;
}
// from GaussianFactorGraph.cpp, see _eliminateOne above
GaussianBayesNet _eliminate(FactorGraph<GaussianFactor>& graph, CachedFactors& cached, const Ordering& ordering) {
GaussianBayesNet chordalBayesNet; // empty
BOOST_FOREACH(const Symbol& key, ordering) {
GaussianConditional::shared_ptr cg = _eliminateOne(graph, cached, key);
chordalBayesNet.push_back(cg);
}
return chordalBayesNet;
}
GaussianBayesNet _eliminate_const(const FactorGraph<GaussianFactor>& graph, CachedFactors& cached, const Ordering& ordering) {
// make a copy that can be modified locally
FactorGraph<GaussianFactor> graph_ignored = graph;
return _eliminate(graph_ignored, cached, ordering);
}
/** Create an empty Bayes Tree */
template<class Conditional, class Config>
ISAM2<Conditional, Config>::ISAM2() : BayesTree<Conditional>() {}
/** Create a Bayes Tree from a nonlinear factor graph */
template<class Conditional, class Config>
ISAM2<Conditional, Config>::ISAM2(const NonlinearFactorGraph<Config>& nlfg, const Ordering& ordering, const Config& config)
: BayesTree<Conditional>(nlfg.linearize(config).eliminate(ordering)), nonlinearFactors_(nlfg), theta_(config) {
// todo: repeats calculation above, just to set "cached"
_eliminate_const(nlfg.linearize(config), cached_, ordering);
}
/* ************************************************************************* */
template<class Conditional, class Config>
boost::shared_ptr<FactorGraph<NonlinearFactor<Config> > >
ISAM2<Conditional, Config>::getAffectedFactors(const list<Symbol>& keys) const {
boost::shared_ptr<FactorGraph<NonlinearFactor<Config> > > allAffected(new FactorGraph<NonlinearFactor<Config> >);
list<int> indices;
BOOST_FOREACH(const Symbol& key, keys) {
const list<int> l = nonlinearFactors_.factors(key);
indices.insert(indices.begin(), l.begin(), l.end());
}
indices.sort();
indices.unique();
BOOST_FOREACH(int i, indices) {
allAffected->push_back(nonlinearFactors_[i]);
}
return allAffected;
}
/* ************************************************************************* */
// retrieve all factors that ONLY contain the affected variables
// (note that the remaining stuff is summarized in the cached factors)
template<class Conditional, class Config>
FactorGraph<GaussianFactor> ISAM2<Conditional, Config>::relinearizeAffectedFactors(const list<Symbol>& affectedKeys) const {
boost::shared_ptr<FactorGraph<NonlinearFactor<Config> > > candidates = getAffectedFactors(affectedKeys);
NonlinearFactorGraph<Config> nonlinearAffectedFactors;
typename FactorGraph<NonlinearFactor<Config> >::const_iterator it;
for(it = candidates->begin(); it != candidates->end(); it++) {
bool inside = true;
BOOST_FOREACH(const Symbol& key, (*it)->keys()) {
if (find(affectedKeys.begin(), affectedKeys.end(), key) == affectedKeys.end()) {
inside = false;
break;
}
}
if (inside)
nonlinearAffectedFactors.push_back(*it);
}
return nonlinearAffectedFactors.linearize(theta_);
}
/* ************************************************************************* */
// find intermediate (linearized) factors from cache that are passed into the affected area
template<class Conditional, class Config>
FactorGraph<GaussianFactor> ISAM2<Conditional, Config>::getCachedBoundaryFactors(Cliques& orphans) {
FactorGraph<GaussianFactor> cachedBoundary;
BOOST_FOREACH(sharedClique orphan, orphans) {
// find the last variable that was eliminated
const Symbol& key = orphan->ordering().back();
// retrieve the cached factor and add to boundary
cachedBoundary.push_back(cached_[key]);
}
return cachedBoundary;
}
/* ************************************************************************* */
template<class Conditional, class Config>
void ISAM2<Conditional, Config>::update_internal(const NonlinearFactorGraph<Config>& newFactors,
const Config& theta_new, Cliques& orphans, double wildfire_threshold, double relinearize_threshold) {
// todo - debug only
// marked_ = nonlinearFactors_.keys();
//// 1 - Remember the new factors for later relinearization
nonlinearFactors_.push_back(newFactors);
//// 2 - add in new information
// add new variables
theta_.insert(theta_new);
// todo - not in lyx yet: relin requires more than just removing the cliques corresponding to the variables!!!
// It's about factors!!!
// basically calculate all the keys contained in the factors that contain any of the keys...
// the goal is to relinearize all variables directly affected by new factors
boost::shared_ptr<FactorGraph<NonlinearFactor<Config> > > allAffected = getAffectedFactors(marked_);
marked_ = allAffected->keys();
// merge keys of new factors with mask
const list<Symbol> newKeys = newFactors.keys();
marked_.insert(marked_.begin(), newKeys.begin(), newKeys.end());
// eliminate duplicates
marked_.sort();
marked_.unique();
//// 4 - removeTop invalidate all cliques involving marked variables
// remove affected factors
BayesNet<GaussianConditional> affectedBayesNet;
this->removeTop(marked_, affectedBayesNet, orphans);
//// 3 - find factors connected to affected variables
//// 4 - linearize
// ordering provides all keys in conditionals, there cannot be others because path to root included
list<Symbol> affectedKeys = affectedBayesNet.ordering();
// todo - remerge in keys of new factors
affectedKeys.insert(affectedKeys.begin(), newKeys.begin(), newKeys.end());
// eliminate duplicates
affectedKeys.sort();
affectedKeys.unique();
FactorGraph<GaussianFactor> factors = relinearizeAffectedFactors(affectedKeys);
// add the cached intermediate results from the boundary of the orphans ...
FactorGraph<GaussianFactor> cachedBoundary = getCachedBoundaryFactors(orphans);
factors.push_back(cachedBoundary);
//// 5 - eliminate and add orphans back in
// create an ordering for the new and contaminated factors
Ordering ordering = factors.getOrdering();
// eliminate into a Bayes net
BayesNet<Conditional> bayesNet = _eliminate(factors, cached_, ordering);
// Create Index from ordering
IndexTable<Symbol> index(ordering);
// insert conditionals back in, straight into the topless bayesTree
typename BayesNet<Conditional>::const_reverse_iterator rit;
for ( rit=bayesNet.rbegin(); rit != bayesNet.rend(); ++rit )
this->insert(*rit, index);
// add orphans to the bottom of the new tree
BOOST_FOREACH(sharedClique orphan, orphans) {
Symbol parentRepresentative = findParentClique(orphan->separator_, index);
sharedClique parent = (*this)[parentRepresentative];
parent->children_ += orphan;
orphan->parent_ = parent; // set new parent!
}
//// 6 - update solution
VectorConfig delta = optimize2(*this, wildfire_threshold);
//// 7 - mark variables, if significant change
marked_.clear();
VectorConfig deltaMarked;
for (VectorConfig::const_iterator it = delta.begin(); it!=delta.end(); it++) {
Symbol key = it->first;
Vector v = it->second;
if (max(abs(v)) >= relinearize_threshold) {
marked_.push_back(key);
deltaMarked.insert(key, v);
}
}
//// 8 - relinearize selected variables
theta_ = expmap(theta_, deltaMarked);
}
template<class Conditional, class Config>
void ISAM2<Conditional, Config>::update(
const NonlinearFactorGraph<Config>& newFactors, const Config& config,
double wildfire_threshold, double relinearize_threshold) {
Cliques orphans;
this->update_internal(newFactors, config, orphans, wildfire_threshold, relinearize_threshold);
}
/* ************************************************************************* */
}
/// namespace gtsam