gtsam/gtsam_unstable/linear/LPSolver.cpp

233 lines
8.8 KiB
C++

/**
* @file LPSolver.cpp
* @brief
* @author Duy Nguyen Ta
* @author Ivan Dario Jimenez
* @date 1/26/16
*/
#include <gtsam_unstable/linear/LPSolver.h>
#include <gtsam_unstable/linear/InfeasibleInitialValues.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam_unstable/linear/LPInitSolverMatlab.h>
namespace gtsam {
LPSolver::LPSolver(const LP &lp) :
lp_(lp) {
// Push back factors that are the same in every iteration to the base graph.
// Those include the equality constraints and zero priors for keys that are
// not in the cost
baseGraph_.push_back(lp_.equalities);
// Collect key-dim map of all variables in the constraints to create their
// zero priors later
keysDim_ = collectKeysDim(lp_.equalities);
KeyDimMap keysDim2 = collectKeysDim(lp_.inequalities);
keysDim_.insert(keysDim2.begin(), keysDim2.end());
// Create and push zero priors of constrained variables that do not exist in
// the cost function
baseGraph_.push_back(*createZeroPriors(lp_.cost.keys(), keysDim_));
// Variable index
equalityVariableIndex_ = VariableIndex(lp_.equalities);
inequalityVariableIndex_ = VariableIndex(lp_.inequalities);
constrainedKeys_ = lp_.equalities.keys();
constrainedKeys_.merge(lp_.inequalities.keys());
}
GaussianFactorGraph::shared_ptr LPSolver::createZeroPriors(
const KeyVector &costKeys, const KeyDimMap &keysDim) const {
GaussianFactorGraph::shared_ptr graph(new GaussianFactorGraph());
for (Key key : keysDim | boost::adaptors::map_keys) {
if (find(costKeys.begin(), costKeys.end(), key) == costKeys.end()) {
size_t dim = keysDim.at(key);
graph->push_back(JacobianFactor(key, eye(dim), zero(dim)));
}
}
return graph;
}
LPState LPSolver::iterate(const LPState &state) const {
// Solve with the current working set
// LP: project the objective neg. gradient to the constraint's null space
// to find the direction to move
VectorValues newValues = solveWithCurrentWorkingSet(state.values,
state.workingSet);
// GTSAM_PRINT(newValues);
// GTSAM_PRINT(state.values);
// If we CAN'T move further
// LP: projection on the constraints' nullspace is zero: we are at a vertex
if (newValues.equals(state.values, 1e-7)) {
// Find and remove the bad inequality constraint by computing its lambda
// Compute lambda from the dual graph
// LP: project the objective's gradient onto each constraint gradient to
// obtain the dual scaling factors
// is it true??
GaussianFactorGraph::shared_ptr dualGraph = buildDualGraph(state.workingSet,
newValues);
VectorValues duals = dualGraph->optimize();
// GTSAM_PRINT(*dualGraph);
// GTSAM_PRINT(duals);
// LP: see which inequality constraint has wrong pulling direction, i.e., dual < 0
int leavingFactor = identifyLeavingConstraint(state.workingSet, duals);
// If all inequality constraints are satisfied: We have the solution!!
if (leavingFactor < 0) {
// TODO If we still have infeasible equality constraints: the problem is
// over-constrained. No solution!
// ...
return LPState(newValues, duals, state.workingSet, true,
state.iterations + 1);
} else {
// Inactivate the leaving constraint
// LP: remove the bad ineq constraint out of the working set
InequalityFactorGraph newWorkingSet = state.workingSet;
newWorkingSet.at(leavingFactor)->inactivate();
return LPState(newValues, duals, newWorkingSet, false,
state.iterations + 1);
}
} else {
// If we CAN make some progress, i.e. p_k != 0
// Adapt stepsize if some inactive constraints complain about this move
// LP: projection on nullspace is NOT zero:
// find and put a blocking inactive constraint to the working set,
// otherwise the problem is unbounded!!!
double alpha;
int factorIx;
VectorValues p = newValues - state.values;
// GTSAM_PRINT(p);
boost::tie(alpha, factorIx) = // using 16.41
computeStepSize(state.workingSet, state.values, p);
// also add to the working set the one that complains the most
InequalityFactorGraph newWorkingSet = state.workingSet;
if (factorIx >= 0)
newWorkingSet.at(factorIx)->activate();
// step!
newValues = state.values + alpha * p;
return LPState(newValues, state.duals, newWorkingSet, false,
state.iterations + 1);
}
}
GaussianFactorGraph::shared_ptr LPSolver::createLeastSquareFactors(
const LinearCost &cost, const VectorValues &xk) const {
GaussianFactorGraph::shared_ptr graph(new GaussianFactorGraph());
//Something in this function breaks when working with funcions that do not include all
//Variables in the cost function. When adding the missing variables as shown we still don't converge
//to the right answer as we would expect from the iterations.
// GTSAM_PRINT(xk);
// GTSAM_PRINT(cost);
for (LinearCost::const_iterator it = cost.begin(); it != cost.end(); ++it) {
size_t dim = cost.getDim(it);
Vector b = xk.at(*it) - cost.getA(it).transpose(); // b = xk-g
graph->push_back(JacobianFactor(*it, eye(dim), b));
}
KeySet allKeys = lp_.inequalities.keys();
allKeys.merge(lp_.equalities.keys());
allKeys.merge(KeySet(lp_.cost.keys()));
if (cost.keys().size() != allKeys.size()) {
KeySet difference;
std::set_difference(allKeys.begin(), allKeys.end(), lp_.cost.begin(),
lp_.cost.end(), std::inserter(difference, difference.end()));
for (Key k : difference) {
graph->push_back(JacobianFactor(k, eye(keysDim_.at(k)), xk.at(k)));
}
}
// GTSAM_PRINT(*graph);
return graph;
}
VectorValues LPSolver::solveWithCurrentWorkingSet(const VectorValues &xk,
const InequalityFactorGraph &workingSet) const {
GaussianFactorGraph workingGraph = baseGraph_; // || X - Xk + g ||^2
workingGraph.push_back(*createLeastSquareFactors(lp_.cost, xk));
for (const LinearInequality::shared_ptr &factor : workingSet) {
if (factor->active())
workingGraph.push_back(factor);
}
// GTSAM_PRINT(workingGraph);
return workingGraph.optimize();
}
boost::shared_ptr<JacobianFactor> LPSolver::createDualFactor(Key key,
const InequalityFactorGraph &workingSet, const VectorValues &delta) const {
// Transpose the A matrix of constrained factors to have the jacobian of the
// dual key
TermsContainer Aterms = collectDualJacobians < LinearEquality
> (key, lp_.equalities, equalityVariableIndex_);
TermsContainer AtermsInequalities = collectDualJacobians < LinearInequality
> (key, workingSet, inequalityVariableIndex_);
Aterms.insert(Aterms.end(), AtermsInequalities.begin(),
AtermsInequalities.end());
// Collect the gradients of unconstrained cost factors to the b vector
if (Aterms.size() > 0) {
Vector b = zero(delta.at(key).size());
Factor::const_iterator it = lp_.cost.find(key);
if (it != lp_.cost.end())
b = lp_.cost.getA(it).transpose();
return boost::make_shared < JacobianFactor > (Aterms, b); // compute the least-square approximation of dual variables
} else {
return boost::make_shared<JacobianFactor>();
}
}
InequalityFactorGraph LPSolver::identifyActiveConstraints(
const InequalityFactorGraph &inequalities,
const VectorValues &initialValues, const VectorValues &duals) const {
InequalityFactorGraph workingSet;
for (const LinearInequality::shared_ptr &factor : inequalities) {
LinearInequality::shared_ptr workingFactor(new LinearInequality(*factor));
double error = workingFactor->error(initialValues);
// TODO: find a feasible initial point for LPSolver.
// For now, we just throw an exception
if (error > 0)
throw InfeasibleInitialValues();
if (fabs(error) < 1e-7) {
workingFactor->activate();
} else {
workingFactor->inactivate();
}
workingSet.push_back(workingFactor);
}
return workingSet;
}
std::pair<VectorValues, VectorValues> LPSolver::optimize(
const VectorValues &initialValues, const VectorValues &duals) const {
{
// Initialize workingSet from the feasible initialValues
InequalityFactorGraph workingSet = identifyActiveConstraints(
lp_.inequalities, initialValues, duals);
LPState state(initialValues, duals, workingSet, false, 0);
/// main loop of the solver
while (!state.converged) {
if(state.iterations > 10000) // Temporary break to avoid infine loops
break;
state = iterate(state);
}
return make_pair(state.values, state.duals);
}
}
boost::tuples::tuple<double, int> LPSolver::computeStepSize(
const InequalityFactorGraph &workingSet, const VectorValues &xk,
const VectorValues &p) const {
return ActiveSetSolver::computeStepSize(workingSet, xk, p,
std::numeric_limits<double>::infinity());
}
pair<VectorValues, VectorValues> LPSolver::optimize() const {
LPInitSolverMatlab initSolver(*this);
VectorValues initValues = initSolver.solve();
return optimize(initValues);
}
}