gtsam/gtsam_unstable/discrete/examples/schedulingQuals12.cpp

257 lines
8.0 KiB
C++

/*
* schedulingExample.cpp
* @brief hard scheduling example
* @date March 25, 2011
* @author Frank Dellaert
*/
#define ENABLE_TIMING
#define ADD_NO_CACHING
#define ADD_NO_PRUNING
#include <gtsam_unstable/discrete/Scheduler.h>
#include <gtsam/base/debug.h>
#include <gtsam/base/timing.h>
#include <algorithm>
using namespace std;
using namespace gtsam;
size_t NRSTUDENTS = 9;
bool NonZero(size_t i) {
return i > 0;
}
/* ************************************************************************* */
void addStudent(Scheduler& s, size_t i) {
switch (i) {
case 0:
s.addStudent("Pan, Yunpeng", "Controls", "Perception", "Mechanics", "Eric Johnson");
break;
case 1:
s.addStudent("Sawhney, Rahul", "Controls", "AI", "Perception", "Henrik Christensen");
break;
case 2:
s.addStudent("Akgun, Baris", "Controls", "AI", "HRI", "Andrea Thomaz");
break;
case 3:
s.addStudent("Jiang, Shu", "Controls", "AI", "Perception", "Ron Arkin");
break;
case 4:
s.addStudent("Grice, Phillip", "Controls", "Perception", "HRI", "Charlie Kemp");
break;
case 5:
s.addStudent("Huaman, Ana", "Controls", "AI", "Perception", "Mike Stilman");
break;
case 6:
s.addStudent("Levihn, Martin", "AI", "Autonomy", "Perception", "Mike Stilman");
break;
case 7:
s.addStudent("Nieto, Carlos", "AI", "Autonomy", "Perception", "Henrik Christensen");
break;
case 8:
s.addStudent("Robinette, Paul", "Controls", "AI", "HRI", "Ayanna Howard");
break;
}
}
/* ************************************************************************* */
Scheduler largeExample(size_t nrStudents = NRSTUDENTS) {
string path("../../../gtsam_unstable/discrete/examples/");
Scheduler s(nrStudents, path + "Doodle2012.csv");
s.addArea("Harvey Lipkin", "Mechanics");
s.addArea("Jun Ueda", "Mechanics");
s.addArea("Patricio Vela", "Controls");
s.addArea("Magnus Egerstedt", "Controls");
s.addArea("Jun Ueda", "Controls");
s.addArea("Panos Tsiotras", "Controls");
s.addArea("Fumin Zhang", "Controls");
s.addArea("Henrik Christensen", "Perception");
s.addArea("Aaron Bobick", "Perception");
s.addArea("Mike Stilman", "AI");
// s.addArea("Henrik Christensen", "AI");
s.addArea("Ayanna Howard", "AI");
s.addArea("Charles Isbell", "AI");
s.addArea("Tucker Balch", "AI");
s.addArea("Ayanna Howard", "Autonomy");
s.addArea("Charlie Kemp", "Autonomy");
s.addArea("Tucker Balch", "Autonomy");
s.addArea("Ron Arkin", "Autonomy");
s.addArea("Andrea Thomaz", "HRI");
s.addArea("Karen Feigh", "HRI");
s.addArea("Charlie Kemp", "HRI");
// add students
for (size_t i = 0; i < nrStudents; i++)
addStudent(s, i);
return s;
}
/* ************************************************************************* */
void runLargeExample() {
Scheduler scheduler = largeExample();
scheduler.print();
// BUILD THE GRAPH !
size_t addMutex = 3;
// SETDEBUG("Scheduler::buildGraph", true);
scheduler.buildGraph(addMutex);
// Do brute force product and output that to file
if (scheduler.nrStudents() == 1) { // otherwise too slow
DecisionTreeFactor product =
*std::dynamic_pointer_cast<DecisionTreeFactor>(scheduler.product());
product.dot("scheduling-large", DefaultKeyFormatter, false);
}
// Do exact inference
// SETDEBUG("timing-verbose", true);
SETDEBUG("DiscreteConditional::DiscreteConditional", true);
#define SAMPLE
#ifdef SAMPLE
gttic(large);
DiscreteBayesNet::shared_ptr chordal = scheduler.eliminate();
gttoc(large);
tictoc_finishedIteration();
tictoc_print();
for (size_t i=0;i<100;i++) {
auto assignment = chordal->sample();
vector<size_t> stats(scheduler.nrFaculty());
scheduler.accumulateStats(assignment, stats);
size_t max = *max_element(stats.begin(), stats.end());
size_t min = *min_element(stats.begin(), stats.end());
size_t nz = count_if(stats.begin(), stats.end(), NonZero);
// cout << min << ", " << max << ", " << nz << endl;
if (nz >= 13 && min >=1 && max <= 4) {
cout << "======================================================\n";
scheduler.printAssignment(assignment);
}
}
#else
gttic(large);
auto MPE = scheduler.optimize();
gttoc(large);
tictoc_finishedIteration();
tictoc_print();
scheduler.printAssignment(MPE);
#endif
}
/* ************************************************************************* */
// Solve a series of relaxed problems for maximum flexibility solution
void solveStaged(size_t addMutex = 2) {
// super-hack! just count...
bool debug = false;
SETDEBUG("DiscreteConditional::COUNT", true);
SETDEBUG("DiscreteConditional::DiscreteConditional", debug); // progress
// make a vector with slot availability, initially all 1
// Reads file to get count :-)
vector<double> slotsAvailable(largeExample(0).nrTimeSlots(), 1.0);
// now, find optimal value for each student, using relaxed mutex constraints
for (size_t s = 0; s < NRSTUDENTS; s++) {
// add all students first time, then drop last one second time, etc...
Scheduler scheduler = largeExample(NRSTUDENTS - s);
//scheduler.print(str(boost::format("Scheduler %d") % (NRSTUDENTS-s)));
// only allow slots not yet taken
scheduler.setSlotsAvailable(slotsAvailable);
// BUILD THE GRAPH !
scheduler.buildGraph(addMutex);
// Do EXACT INFERENCE
gttic_(eliminate);
DiscreteBayesNet::shared_ptr chordal = scheduler.eliminate();
gttoc_(eliminate);
// find root node
DiscreteConditional::shared_ptr root = chordal->back();
if (debug)
root->print(""/*scheduler.studentName(s)*/);
// solve root node only
size_t bestSlot = root->argmax();
// get corresponding count
DiscreteKey dkey = scheduler.studentKey(NRSTUDENTS - 1 - s);
DiscreteValues values;
values[dkey.first] = bestSlot;
size_t count = (*root)(values);
// remove this slot from consideration
slotsAvailable[bestSlot] = 0.0;
cout << scheduler.studentName(NRSTUDENTS - 1 - s) << " = " <<
scheduler.slotName(bestSlot) << " (" << bestSlot
<< "), count = " << count << endl;
}
tictoc_print_();
}
/* ************************************************************************* */
// Sample from solution found above and evaluate cost function
DiscreteBayesNet::shared_ptr createSampler(size_t i,
size_t slot, vector<Scheduler>& schedulers) {
Scheduler scheduler = largeExample(0); // todo: wrong nr students
addStudent(scheduler, i);
SETDEBUG("Scheduler::buildGraph", false);
scheduler.addStudentSpecificConstraints(0, slot);
DiscreteBayesNet::shared_ptr chordal = scheduler.eliminate();
schedulers.push_back(scheduler);
return chordal;
}
void sampleSolutions() {
vector<Scheduler> schedulers;
vector<DiscreteBayesNet::shared_ptr> samplers(NRSTUDENTS);
// Given the time-slots, we can create NRSTUDENTS independent samplers
vector<size_t> slots{3, 20, 2, 6, 5, 11, 1, 4}; // given slots
for (size_t i = 0; i < NRSTUDENTS; i++)
samplers[i] = createSampler(i, slots[i], schedulers);
// now, sample schedules
for (size_t n = 0; n < 500; n++) {
vector<size_t> stats(19, 0);
vector<DiscreteValues> samples;
for (size_t i = 0; i < NRSTUDENTS; i++) {
samples.push_back(samplers[i]->sample());
schedulers[i].accumulateStats(samples[i], stats);
}
size_t max = *max_element(stats.begin(), stats.end());
size_t min = *min_element(stats.begin(), stats.end());
size_t nz = count_if(stats.begin(), stats.end(), NonZero);
if (nz >= 15 && max <= 2) {
cout << "Sampled schedule " << (n + 1) << ", min = " << min
<< ", nz = " << nz << ", max = " << max << endl;
for (size_t i = 0; i < NRSTUDENTS; i++) {
cout << schedulers[i].studentName(0) << " : " << schedulers[i].slotName(
slots[i]) << endl;
schedulers[i].printSpecial(samples[i]);
}
}
}
}
/* ************************************************************************* */
int main() {
// runLargeExample();
solveStaged(3);
// sampleSolutions();
return 0;
}
/* ************************************************************************* */