120 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			120 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file	DiscreteBayesNet_FG.cpp
 | 
						|
 * @brief 	Discrete Bayes Net example using Factor Graphs
 | 
						|
 * @author	Abhijit
 | 
						|
 * @date	Jun 4, 2012
 | 
						|
 *
 | 
						|
 * We use the famous Rain/Cloudy/Sprinkler Example of [Russell & Norvig, 2009, p529]
 | 
						|
 * You may be familiar with other graphical model packages like BNT (available
 | 
						|
 * at http://bnt.googlecode.com/svn/trunk/docs/usage.html) where this is used as an
 | 
						|
 * example. The following demo is same as that in the above link, except that
 | 
						|
 * everything is using GTSAM.
 | 
						|
 */
 | 
						|
 | 
						|
#include <gtsam/discrete/DiscreteFactorGraph.h>
 | 
						|
#include <gtsam/discrete/DiscreteSequentialSolver.h>
 | 
						|
#include <iomanip>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
 | 
						|
int main(int argc, char **argv) {
 | 
						|
 | 
						|
	// We assume binary state variables
 | 
						|
	// we have 0 == "False" and 1 == "True"
 | 
						|
	const size_t nrStates = 2;
 | 
						|
 | 
						|
	// define variables
 | 
						|
	DiscreteKey Cloudy(1, nrStates), Sprinkler(2, nrStates), Rain(3, nrStates),
 | 
						|
			WetGrass(4, nrStates);
 | 
						|
 | 
						|
	// create Factor Graph of the bayes net
 | 
						|
	DiscreteFactorGraph graph;
 | 
						|
 | 
						|
	// add factors
 | 
						|
	graph.add(Cloudy, "0.5 0.5"); //P(Cloudy)
 | 
						|
	graph.add(Cloudy & Sprinkler, "0.5 0.5 0.9 0.1"); //P(Sprinkler | Cloudy)
 | 
						|
	graph.add(Cloudy & Rain, "0.8 0.2 0.2 0.8"); //P(Rain | Cloudy)
 | 
						|
	graph.add(Sprinkler & Rain & WetGrass,
 | 
						|
			"1 0 0.1 0.9 0.1 0.9 0.001 0.99"); //P(WetGrass | Sprinkler, Rain)
 | 
						|
 | 
						|
	// Alternatively we can also create a DiscreteBayesNet, add DiscreteConditional
 | 
						|
	// factors and create a FactorGraph from it. (See testDiscreteBayesNet.cpp)
 | 
						|
 | 
						|
	// Since this is a relatively small distribution, we can as well print
 | 
						|
	// the whole distribution..
 | 
						|
	cout << "Distribution of Example: " << endl;
 | 
						|
	cout << setw(11) << "Cloudy(C)" << setw(14) << "Sprinkler(S)" << setw(10)
 | 
						|
			<< "Rain(R)" << setw(14) << "WetGrass(W)" << setw(15) << "P(C,S,R,W)"
 | 
						|
			<< endl;
 | 
						|
	for (size_t a = 0; a < nrStates; a++)
 | 
						|
		for (size_t m = 0; m < nrStates; m++)
 | 
						|
			for (size_t h = 0; h < nrStates; h++)
 | 
						|
				for (size_t c = 0; c < nrStates; c++) {
 | 
						|
					DiscreteFactor::Values values;
 | 
						|
					values[Cloudy.first] = c;
 | 
						|
					values[Sprinkler.first] = h;
 | 
						|
					values[Rain.first] = m;
 | 
						|
					values[WetGrass.first] = a;
 | 
						|
					double prodPot = graph(values);
 | 
						|
					cout << boolalpha << setw(8) << (bool) c << setw(14)
 | 
						|
							<< (bool) h << setw(12) << (bool) m << setw(13)
 | 
						|
							<< (bool) a << setw(16) << prodPot << endl;
 | 
						|
				}
 | 
						|
 | 
						|
 | 
						|
	// "Most Probable Explanation", i.e., configuration with largest value
 | 
						|
	DiscreteSequentialSolver solver(graph);
 | 
						|
	DiscreteFactor::sharedValues optimalDecoding = solver.optimize();
 | 
						|
	cout <<"\nMost Probable Explanation (MPE):" << endl;
 | 
						|
	cout << boolalpha << "Cloudy = " << (bool)(*optimalDecoding)[Cloudy.first]
 | 
						|
	                << "  Sprinkler = " << (bool)(*optimalDecoding)[Sprinkler.first]
 | 
						|
	                << "  Rain = " << boolalpha << (bool)(*optimalDecoding)[Rain.first]
 | 
						|
	                << "  WetGrass = " << (bool)(*optimalDecoding)[WetGrass.first]<< endl;
 | 
						|
 | 
						|
 | 
						|
	// "Inference" We show an inference query like: probability that the Sprinkler was on;
 | 
						|
	// given that the grass is wet i.e. P( S | W=1) =?
 | 
						|
	cout << "\nInference Query: Probability of Sprinkler being on given Grass is Wet" << endl;
 | 
						|
 | 
						|
	// Method 1: we can compute the joint marginal P(S,W) and from that we can compute
 | 
						|
	// P(S | W=1) = P(S,W=1)/P(W=1) We do this in following three steps..
 | 
						|
 | 
						|
	//Step1: Compute P(S,W)
 | 
						|
	DiscreteFactorGraph jointFG;
 | 
						|
	jointFG = *solver.jointFactorGraph(DiscreteKeys(Sprinkler & WetGrass).indices());
 | 
						|
	DecisionTreeFactor probSW = jointFG.product();
 | 
						|
 | 
						|
	//Step2: Compute P(W)
 | 
						|
	DecisionTreeFactor probW = *solver.marginalFactor(WetGrass.first);
 | 
						|
 | 
						|
	//Step3: Computer P(S | W=1) = P(S,W=1)/P(W=1)
 | 
						|
	DiscreteFactor::Values values;
 | 
						|
	values[WetGrass.first] = 1;
 | 
						|
 | 
						|
	//print P(S=0|W=1)
 | 
						|
	values[Sprinkler.first] = 0;
 | 
						|
	cout << "P(S=0|W=1) = " << probSW(values)/probW(values) << endl;
 | 
						|
 | 
						|
	//print P(S=1|W=1)
 | 
						|
	values[Sprinkler.first] = 1;
 | 
						|
	cout << "P(S=1|W=1) = " << probSW(values)/probW(values) << endl;
 | 
						|
 | 
						|
	// TODO: Method 2 : One way is to modify the factor graph to
 | 
						|
	// incorporate the evidence node and compute the marginal
 | 
						|
	// TODO: graph.addEvidence(Cloudy,0);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 |