gtsam/gtsam/hybrid/HybridGaussianFactorGraph.h

198 lines
6.3 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file HybridGaussianFactorGraph.h
* @brief Linearized Hybrid factor graph that uses type erasure
* @author Fan Jiang, Varun Agrawal, Frank Dellaert
* @date Mar 11, 2022
*/
#pragma once
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridFactor.h>
#include <gtsam/hybrid/HybridFactorGraph.h>
#include <gtsam/inference/EliminateableFactorGraph.h>
#include <gtsam/inference/FactorGraph.h>
#include <gtsam/inference/Ordering.h>
#include <gtsam/linear/GaussianFactor.h>
#include <gtsam/linear/VectorValues.h>
#include <functional>
#include <optional>
namespace gtsam {
// Forward declarations
class HybridGaussianFactorGraph;
class HybridConditional;
class HybridBayesNet;
class HybridEliminationTree;
class HybridBayesTree;
class HybridJunctionTree;
class DecisionTreeFactor;
class JacobianFactor;
class HybridValues;
/**
* @brief Main elimination function for HybridGaussianFactorGraph.
*
* @param factors The factor graph to eliminate.
* @param keys The elimination ordering.
* @return The conditional on the ordering keys and the remaining factors.
* @ingroup hybrid
*/
GTSAM_EXPORT
std::pair<std::shared_ptr<HybridConditional>, std::shared_ptr<Factor>>
EliminateHybrid(const HybridGaussianFactorGraph& factors, const Ordering& keys);
/**
* @brief Return a Colamd constrained ordering where the discrete keys are
* eliminated after the continuous keys.
*
* @return const Ordering
*/
GTSAM_EXPORT const Ordering
HybridOrdering(const HybridGaussianFactorGraph& graph);
/* ************************************************************************* */
template <>
struct EliminationTraits<HybridGaussianFactorGraph> {
typedef Factor FactorType; ///< Type of factors in factor graph
typedef HybridGaussianFactorGraph
FactorGraphType; ///< Type of the factor graph (e.g.
///< HybridGaussianFactorGraph)
typedef HybridConditional
ConditionalType; ///< Type of conditionals from elimination
typedef HybridBayesNet
BayesNetType; ///< Type of Bayes net from sequential elimination
typedef HybridEliminationTree
EliminationTreeType; ///< Type of elimination tree
typedef HybridBayesTree BayesTreeType; ///< Type of Bayes tree
typedef HybridJunctionTree JunctionTreeType; ///< Type of Junction tree
/// The default dense elimination function
static std::pair<std::shared_ptr<ConditionalType>,
std::shared_ptr<FactorType>>
DefaultEliminate(const FactorGraphType& factors, const Ordering& keys) {
return EliminateHybrid(factors, keys);
}
/// The default ordering generation function
static Ordering DefaultOrderingFunc(
const FactorGraphType& graph,
std::optional<std::reference_wrapper<const VariableIndex>>) {
return HybridOrdering(graph);
}
};
/**
* Hybrid Gaussian Factor Graph
* -----------------------
* This is the linearized version of a hybrid factor graph.
*
* @ingroup hybrid
*/
class GTSAM_EXPORT HybridGaussianFactorGraph
: public HybridFactorGraph,
public EliminateableFactorGraph<HybridGaussianFactorGraph> {
protected:
/// Check if FACTOR type is derived from GaussianFactor.
template <typename FACTOR>
using IsGaussian = typename std::enable_if<
std::is_base_of<GaussianFactor, FACTOR>::value>::type;
public:
using Base = HybridFactorGraph;
using This = HybridGaussianFactorGraph; ///< this class
using BaseEliminateable =
EliminateableFactorGraph<This>; ///< for elimination
using shared_ptr = std::shared_ptr<This>; ///< shared_ptr to This
using Values = gtsam::Values; ///< backwards compatibility
using Indices = KeyVector; ///< map from keys to values
/// @name Constructors
/// @{
/// @brief Default constructor.
HybridGaussianFactorGraph() = default;
/**
* Implicit copy/downcast constructor to override explicit template container
* constructor. In BayesTree this is used for:
* `cachedSeparatorMarginal_.reset(*separatorMarginal)`
* */
template <class DERIVEDFACTOR>
HybridGaussianFactorGraph(const FactorGraph<DERIVEDFACTOR>& graph)
: Base(graph) {}
/// @}
/// @name Testable
/// @{
// TODO(dellaert): customize print and equals.
// void print(const std::string& s = "HybridGaussianFactorGraph",
// const KeyFormatter& keyFormatter = DefaultKeyFormatter) const
// override;
// bool equals(const This& fg, double tol = 1e-9) const override;
/// @}
/// @name Standard Interface
/// @{
using Base::error; // Expose error(const HybridValues&) method..
/**
* @brief Compute error for each discrete assignment,
* and return as a tree.
*
* Error \f$ e = \Vert x - \mu \Vert_{\Sigma} \f$.
*
* @param continuousValues Continuous values at which to compute the error.
* @return AlgebraicDecisionTree<Key>
*/
AlgebraicDecisionTree<Key> error(const VectorValues& continuousValues) const;
/**
* @brief Compute unnormalized probability \f$ P(X | M, Z) \f$
* for each discrete assignment, and return as a tree.
*
* @param continuousValues Continuous values at which to compute the
* probability.
* @return AlgebraicDecisionTree<Key>
*/
AlgebraicDecisionTree<Key> probPrime(
const VectorValues& continuousValues) const;
/**
* @brief Compute the unnormalized posterior probability for a continuous
* vector values given a specific assignment.
*
* @return double
*/
double probPrime(const HybridValues& values) const;
/**
* @brief Create a decision tree of factor graphs out of this hybrid factor
* graph.
*
* For example, if there are two mixture factors, one with a discrete key A
* and one with a discrete key B, then the decision tree will have two levels,
* one for A and one for B. The leaves of the tree will be the Gaussian
* factors that have only continuous keys.
*/
GaussianFactorGraphTree assembleGraphTree() const;
/// @}
};
} // namespace gtsam