gtsam/examples/TriangulationLOSTExample.cpp

161 lines
5.8 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file TriangulationLOSTExample.cpp
* @author Akshay Krishnan
* @brief This example runs triangulation several times using 3 different
* approaches: LOST, DLT, and DLT with optimization. It reports the covariance
* and the runtime for each approach.
*
* @date 2022-07-10
*/
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Rot3.h>
#include <gtsam/geometry/triangulation.h>
#include <chrono>
#include <iostream>
#include <random>
#include <optional>
using namespace std;
using namespace gtsam;
static std::mt19937 rng(42);
void PrintCovarianceStats(const Matrix& mat, const std::string& method) {
Matrix centered = mat.rowwise() - mat.colwise().mean();
Matrix cov = (centered.adjoint() * centered) / double(mat.rows() - 1);
std::cout << method << " covariance: " << std::endl;
std::cout << cov << std::endl;
std::cout << "Trace sqrt: " << sqrt(cov.trace()) << std::endl << std::endl;
}
void PrintDuration(const std::chrono::nanoseconds dur, double num_samples,
const std::string& method) {
double nanoseconds = dur.count() / num_samples;
std::cout << "Time taken by " << method << ": " << nanoseconds * 1e-3
<< std::endl;
}
void GetLargeCamerasDataset(CameraSet<PinholeCamera<Cal3_S2>>* cameras,
std::vector<Pose3>* poses, Point3* point,
Point2Vector* measurements) {
const double minXY = -10, maxXY = 10;
const double minZ = -20, maxZ = 0;
const int nrCameras = 500;
cameras->reserve(nrCameras);
poses->reserve(nrCameras);
measurements->reserve(nrCameras);
*point = Point3(0.0, 0.0, 10.0);
std::uniform_real_distribution<double> rand_xy(minXY, maxXY);
std::uniform_real_distribution<double> rand_z(minZ, maxZ);
Cal3_S2 identityK;
for (int i = 0; i < nrCameras; ++i) {
Point3 wti(rand_xy(rng), rand_xy(rng), rand_z(rng));
Pose3 wTi(Rot3(), wti);
poses->push_back(wTi);
cameras->emplace_back(wTi, identityK);
measurements->push_back(cameras->back().project(*point));
}
}
void GetSmallCamerasDataset(CameraSet<PinholeCamera<Cal3_S2>>* cameras,
std::vector<Pose3>* poses, Point3* point,
Point2Vector* measurements) {
Pose3 pose1;
Pose3 pose2(Rot3(), Point3(5., 0., -5.));
Cal3_S2 identityK;
PinholeCamera<Cal3_S2> camera1(pose1, identityK);
PinholeCamera<Cal3_S2> camera2(pose2, identityK);
*point = Point3(0, 0, 1);
cameras->push_back(camera1);
cameras->push_back(camera2);
*poses = {pose1, pose2};
*measurements = {camera1.project(*point), camera2.project(*point)};
}
Point2Vector AddNoiseToMeasurements(const Point2Vector& measurements,
const double measurementSigma) {
std::normal_distribution<double> normal(0.0, measurementSigma);
Point2Vector noisyMeasurements;
noisyMeasurements.reserve(measurements.size());
for (const auto& p : measurements) {
noisyMeasurements.emplace_back(p.x() + normal(rng), p.y() + normal(rng));
}
return noisyMeasurements;
}
/* ************************************************************************* */
int main(int argc, char* argv[]) {
CameraSet<PinholeCamera<Cal3_S2>> cameras;
std::vector<Pose3> poses;
Point3 landmark;
Point2Vector measurements;
GetLargeCamerasDataset(&cameras, &poses, &landmark, &measurements);
// GetSmallCamerasDataset(&cameras, &poses, &landmark, &measurements);
const double measurementSigma = 1e-2;
SharedNoiseModel measurementNoise =
noiseModel::Isotropic::Sigma(2, measurementSigma);
const long int nrTrials = 1000;
Matrix errorsDLT = Matrix::Zero(nrTrials, 3);
Matrix errorsLOST = Matrix::Zero(nrTrials, 3);
Matrix errorsDLTOpt = Matrix::Zero(nrTrials, 3);
double rank_tol = 1e-9;
std::shared_ptr<Cal3_S2> calib = std::make_shared<Cal3_S2>();
std::chrono::nanoseconds durationDLT;
std::chrono::nanoseconds durationDLTOpt;
std::chrono::nanoseconds durationLOST;
for (int i = 0; i < nrTrials; i++) {
Point2Vector noisyMeasurements =
AddNoiseToMeasurements(measurements, measurementSigma);
auto lostStart = std::chrono::high_resolution_clock::now();
auto estimateLOST = triangulatePoint3<Cal3_S2>(
cameras, noisyMeasurements, rank_tol, false, measurementNoise, true);
durationLOST += std::chrono::high_resolution_clock::now() - lostStart;
auto dltStart = std::chrono::high_resolution_clock::now();
auto estimateDLT = triangulatePoint3<Cal3_S2>(
cameras, noisyMeasurements, rank_tol, false, measurementNoise, false);
durationDLT += std::chrono::high_resolution_clock::now() - dltStart;
auto dltOptStart = std::chrono::high_resolution_clock::now();
auto estimateDLTOpt = triangulatePoint3<Cal3_S2>(
cameras, noisyMeasurements, rank_tol, true, measurementNoise, false);
durationDLTOpt += std::chrono::high_resolution_clock::now() - dltOptStart;
errorsLOST.row(i) = estimateLOST - landmark;
errorsDLT.row(i) = estimateDLT - landmark;
errorsDLTOpt.row(i) = estimateDLTOpt - landmark;
}
PrintCovarianceStats(errorsLOST, "LOST");
PrintCovarianceStats(errorsDLT, "DLT");
PrintCovarianceStats(errorsDLTOpt, "DLT_OPT");
PrintDuration(durationLOST, nrTrials, "LOST");
PrintDuration(durationDLT, nrTrials, "DLT");
PrintDuration(durationDLTOpt, nrTrials, "DLT_OPT");
}