gtsam/examples/matlab/VisualSLAMExample.m

101 lines
3.4 KiB
Matlab

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
% Atlanta, Georgia 30332-0415
% All Rights Reserved
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
%
% See LICENSE for the license information
%
% @brief A simple visual SLAM example for structure from motion
% @author Duy-Nguyen Ta
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Assumptions
% - Landmarks as 8 vertices of a cube: (10,10,10) (-10,10,10) etc...
% - Cameras are on a circle around the cube, pointing at the world origin
% - Each camera sees all landmarks.
% - Visual measurements as 2D points are given, corrupted by Gaussian noise.
%% Generate simulated data
% 3D landmarks as vertices of a cube
points = {gtsamPoint3([10 10 10]'),...
gtsamPoint3([-10 10 10]'),...
gtsamPoint3([-10 -10 10]'),...
gtsamPoint3([10 -10 10]'),...
gtsamPoint3([10 10 -10]'),...
gtsamPoint3([-10 10 -10]'),...
gtsamPoint3([-10 -10 -10]'),...
gtsamPoint3([10 -10 -10]')};
% Camera poses on a circle around the cube, pointing at the world origin
nCameras = 6;
height = 0;
r = 30;
poses = {};
for i=1:nCameras
theta = (i-1)*2*pi/nCameras;
t = gtsamPoint3([r*cos(theta), r*sin(theta), height]');
camera = gtsamSimpleCamera_lookat(t, gtsamPoint3(), gtsamPoint3([0,0,1]'), gtsamCal3_S2())
poses{i} = camera.pose();
end
measurementNoiseSigma = 1.0;
pointNoiseSigma = 0.1;
poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]';
%% Create the graph (defined in visualSLAM.h, derived from NonlinearFactorGraph)
graph = visualSLAMGraph;
%% Add factors for all measurements
measurementNoise = gtsamSharedNoiseModel_Sigma(2,measurementNoiseSigma);
K = gtsamCal3_S2(500,500,0,640/2,480/2);
for i=1:nCameras
camera = gtsamSimpleCamera(K,poses{i});
for j=1:size(points,2)
zij = camera.project(points{j}); % you can add noise here if desired
graph.addMeasurement(zij, measurementNoise, symbol('x',i), symbol('l',j), K);
end
end
%% Add Gaussian priors for a pose and a landmark to constrain the system
posePriorNoise = gtsamSharedNoiseModel_Sigmas(poseNoiseSigmas);
graph.addPosePrior(symbol('x',1), poses{1}, posePriorNoise);
pointPriorNoise = gtsamSharedNoiseModel_Sigma(3,pointNoiseSigma);
graph.addPointPrior(symbol('l',1), points{1}, pointPriorNoise);
%% Print the graph
graph.print(sprintf('\nFactor graph:\n'));
%% Initialize to noisy poses and points
initialEstimate = visualSLAMValues;
for i=1:size(poses,2)
initialEstimate.insertPose(symbol('x',i), poses{i});
end
for j=1:size(points,2)
initialEstimate.insertPoint(symbol('l',j), points{j});
end
initialEstimate.print(sprintf('\nInitial estimate:\n '));
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
result = graph.optimize(initialEstimate);
result.print(sprintf('\nFinal result:\n '));
%% Plot results with covariance ellipses
marginals = graph.marginals(result);
figure(1);clf
hold on;
for j=1:size(points,2)
P = marginals.marginalCovariance(symbol('l',j));
point_j = result.point(symbol('l',j));
plot3(point_j.x, point_j.y, point_j.z,'marker','o');
covarianceEllipse3D([point_j.x;point_j.y;point_j.z],P);
end
for i=1:size(poses,2)
P = marginals.marginalCovariance(symbol('x',i))
pose_i = result.pose(symbol('x',i))
plotPose3(pose_i,P,10);
end
axis equal