287 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			287 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  * @file    GaussianFactorGraph.h
 | |
|  * @brief   Linear Factor Graph where all factors are Gaussians
 | |
|  * @author  Kai Ni
 | |
|  * @author  Christian Potthast
 | |
|  * @author  Alireza Fathi
 | |
|  */ 
 | |
| 
 | |
| // $Id: GaussianFactorGraph.h,v 1.24 2009/08/14 20:48:51 acunning Exp $
 | |
| 
 | |
| // \callgraph
 | |
|  
 | |
| #pragma once
 | |
| 
 | |
| #include <boost/shared_ptr.hpp>
 | |
| #include "FactorGraph.h"
 | |
| #include "Errors.h"
 | |
| #include "GaussianFactor.h"
 | |
| #include "GaussianBayesNet.h" // needed for MATLAB toolbox !!
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
| 	class Ordering;
 | |
| 
 | |
|   /**
 | |
|    * A Linear Factor Graph is a factor graph where all factors are Gaussian, i.e.
 | |
|    *   Factor == GaussianFactor
 | |
|    *   VectorConfig = A configuration of vectors
 | |
|    * Most of the time, linear factor graphs arise by linearizing a non-linear factor graph.
 | |
|    */
 | |
|   class GaussianFactorGraph : public FactorGraph<GaussianFactor> {
 | |
|   public:
 | |
| 
 | |
|     /**
 | |
|      * Default constructor 
 | |
|      */
 | |
|     GaussianFactorGraph() {}
 | |
| 
 | |
|     /**
 | |
|      * Constructor that receives a Chordal Bayes Net and returns a GaussianFactorGraph
 | |
|      */
 | |
|     GaussianFactorGraph(const GaussianBayesNet& CBN);
 | |
| 
 | |
|   	/** Add a null factor */
 | |
|     inline void add(const Vector& b) {
 | |
|     	push_back(sharedFactor(new GaussianFactor(b)));
 | |
|   	}
 | |
| 
 | |
|   	/** Add a unary factor */
 | |
|     inline void add(const Symbol& key1, const Matrix& A1,
 | |
|   			const Vector& b, const SharedDiagonal& model) {
 | |
|     	push_back(sharedFactor(new GaussianFactor(key1,A1,b,model)));
 | |
|   	}
 | |
| 
 | |
|   	/** Add a binary factor */
 | |
|     inline void add(const Symbol& key1, const Matrix& A1,
 | |
|   			const Symbol& key2, const Matrix& A2,
 | |
|   			const Vector& b, const SharedDiagonal& model) {
 | |
|     	push_back(sharedFactor(new GaussianFactor(key1,A1,key2,A2,b,model)));
 | |
|   	}
 | |
| 
 | |
|   	/** Add a ternary factor */
 | |
|     inline void add(const Symbol& key1, const Matrix& A1,
 | |
|   			const Symbol& key2, const Matrix& A2,
 | |
|   			const Symbol& key3, const Matrix& A3,
 | |
|   			const Vector& b, const SharedDiagonal& model) {
 | |
|     	push_back(sharedFactor(new GaussianFactor(key1,A1,key2,A2,key3,A3,b,model)));
 | |
|   	}
 | |
| 
 | |
|   	/** Add an n-ary factor */
 | |
|     inline void add(const std::vector<std::pair<Symbol, Matrix> > &terms,
 | |
|   	    const Vector &b, const SharedDiagonal& model) {
 | |
|     	push_back(sharedFactor(new GaussianFactor(terms,b,model)));
 | |
|   	}
 | |
| 
 | |
| 		/** return A*x-b */
 | |
| 		Errors errors(const VectorConfig& x) const;
 | |
| 
 | |
| 		/** shared pointer version */
 | |
| 		boost::shared_ptr<Errors> errors_(const VectorConfig& x) const;
 | |
| 
 | |
| 			/** unnormalized error */
 | |
| 		double error(const VectorConfig& x) const;
 | |
| 
 | |
| 		/** return A*x */
 | |
| 		Errors operator*(const VectorConfig& x) const;
 | |
| 
 | |
| 		/* In-place version e <- A*x that overwrites e. */
 | |
| 		void multiplyInPlace(const VectorConfig& x, Errors& e) const;
 | |
| 
 | |
| 		/* In-place version e <- A*x that takes an iterator. */
 | |
| 		void multiplyInPlace(const VectorConfig& x, const Errors::iterator& e) const;
 | |
| 
 | |
| 		/** return A^e */
 | |
| 		VectorConfig operator^(const Errors& e) const;
 | |
| 
 | |
| 		/** x += alpha*A'*e */
 | |
| 		void transposeMultiplyAdd(double alpha, const Errors& e, VectorConfig& x) const;
 | |
| 
 | |
|   	/**
 | |
|   	 * Calculate Gradient of A^(A*x-b) for a given config
 | |
|   	 * @param x: VectorConfig specifying where to calculate gradient
 | |
|   	 * @return gradient, as a VectorConfig as well
 | |
|   	 */
 | |
|   	VectorConfig gradient(const VectorConfig& x) const;
 | |
| 
 | |
| 		/** Unnormalized probability. O(n) */
 | |
| 		double probPrime(const VectorConfig& c) const {
 | |
| 			return exp(-0.5 * error(c));
 | |
| 		}
 | |
| 
 | |
|     /**
 | |
|      * find the separator, i.e. all the nodes that have at least one
 | |
|      * common factor with the given node. FD: not used AFAIK.
 | |
|      */
 | |
|     std::set<Symbol> find_separator(const Symbol& key) const;
 | |
| 
 | |
|   	/**
 | |
|      * Eliminate a single node yielding a conditional Gaussian
 | |
|      * Eliminates the factors from the factor graph through findAndRemoveFactors
 | |
|      * and adds a new factor on the separator to the factor graph
 | |
|      * @param key is the key to eliminate
 | |
|      * @param enableJoinFactor uses the older joint factor combine process when true,
 | |
|      *    and when false uses the newer single matrix combine
 | |
|      */
 | |
|     GaussianConditional::shared_ptr eliminateOne(const Symbol& key, bool enableJoinFactor = true);
 | |
| 
 | |
|     /**
 | |
|      * Peforms a supposedly-faster (fewer matrix copy) version of elimination
 | |
|      * CURRENTLY IN TESTING
 | |
|      */
 | |
|     GaussianConditional::shared_ptr eliminateOneMatrixJoin(const Symbol& key);
 | |
| 
 | |
|     /**
 | |
|      * eliminate factor graph in place(!) in the given order, yielding
 | |
|      * a chordal Bayes net. Allows for passing an incomplete ordering
 | |
|      * that does not completely eliminate the graph
 | |
|      * @param enableJoinFactor uses the older joint factor combine process when true,
 | |
|      *    and when false uses the newer single matrix combine
 | |
|      */
 | |
|     GaussianBayesNet eliminate(const Ordering& ordering, bool enableJoinFactor = true);
 | |
| 
 | |
|     /**
 | |
|      * optimize a linear factor graph
 | |
|      * @param ordering fg in order
 | |
|      * @param enableJoinFactor uses the older joint factor combine process when true,
 | |
|      *    and when false uses the newer single matrix combine
 | |
|      */
 | |
|     VectorConfig optimize(const Ordering& ordering, bool enableJoinFactor = true);
 | |
| 
 | |
|     /**
 | |
|      * shared pointer versions for MATLAB
 | |
|      */
 | |
|     boost::shared_ptr<GaussianBayesNet> eliminate_(const Ordering&);
 | |
|     boost::shared_ptr<VectorConfig> optimize_(const Ordering&);
 | |
| 
 | |
|     /**
 | |
|      * static function that combines two factor graphs
 | |
|      * @param const &lfg1 Linear factor graph
 | |
|      * @param const &lfg2 Linear factor graph
 | |
|      * @return a new combined factor graph
 | |
|      */
 | |
|     static GaussianFactorGraph combine2(const GaussianFactorGraph& lfg1,
 | |
| 				const GaussianFactorGraph& lfg2);
 | |
| 		
 | |
|     /**
 | |
|      * combine two factor graphs
 | |
|      * @param *lfg Linear factor graph
 | |
|      */
 | |
|     void combine(const GaussianFactorGraph &lfg);
 | |
| 
 | |
|     /**
 | |
|      * Find all variables and their dimensions
 | |
|      * @return The set of all variable/dimension pairs
 | |
|      */
 | |
|     Dimensions dimensions() const;
 | |
| 
 | |
|     /**
 | |
|      * Add zero-mean i.i.d. Gaussian prior terms to each variable
 | |
|      * @param sigma Standard deviation of Gaussian
 | |
|      */
 | |
|     GaussianFactorGraph add_priors(double sigma) const;
 | |
| 
 | |
|     /**
 | |
|      * Return RHS (b./sigmas) as Errors class
 | |
|      */
 | |
|     Errors rhs() const;
 | |
| 
 | |
|     /**
 | |
|      * Return RHS (b./sigmas) as Vector
 | |
|      */
 | |
|     Vector rhsVector() const;
 | |
| 
 | |
|     /**
 | |
|      * Return (dense) matrix associated with factor graph
 | |
|      * @param ordering of variables needed for matrix column order
 | |
|      */
 | |
|     std::pair<Matrix,Vector> matrix (const Ordering& ordering) const;
 | |
| 
 | |
|     /**
 | |
|      * split the source vector w.r.t. the given ordering and assemble a vector config
 | |
|      * @param v: the source vector
 | |
|      * @param ordeirng: the ordering corresponding to the vector
 | |
|      */
 | |
|     VectorConfig assembleConfig(const Vector& v, const Ordering& ordering) const;
 | |
| 
 | |
|     /**
 | |
|      * get the starting column indices for all variables
 | |
|      * @param ordering of variables needed for matrix column order
 | |
|      * @return The set of all variable/index pairs
 | |
|      */
 | |
|     Dimensions columnIndices(const Ordering& ordering) const;
 | |
| 
 | |
|   	/**
 | |
|   	 * Return 3*nzmax matrix where the rows correspond to the vectors i, j, and s
 | |
|   	 * to generate an m-by-n sparse matrix, which can be given to MATLAB's sparse function.
 | |
|   	 * The standard deviations are baked into A and b
 | |
|   	 * @param ordering of variables needed for matrix column order
 | |
|   	 */
 | |
|   	Matrix sparse(const Ordering& ordering) const;
 | |
| 
 | |
|   	/**
 | |
|   	 * Version that takes column indices rather than ordering
 | |
|   	 */
 | |
|   	Matrix sparse(const Dimensions& indices) const;
 | |
| 
 | |
|   	/**
 | |
| 		 * Find solution using gradient descent
 | |
| 		 * @param x0: VectorConfig specifying initial estimate
 | |
| 		 * @return solution
 | |
| 		 */
 | |
| 		VectorConfig steepestDescent(const VectorConfig& x0, bool verbose = false,
 | |
| 				double epsilon = 1e-3, size_t maxIterations = 0) const;
 | |
| 
 | |
| 		/**
 | |
| 		 * shared pointer versions for MATLAB
 | |
| 		 */
 | |
| 		boost::shared_ptr<VectorConfig>
 | |
| 		steepestDescent_(const VectorConfig& x0, bool verbose = false,
 | |
| 				double epsilon = 1e-3, size_t maxIterations = 0) const;
 | |
| 
 | |
| 		/**
 | |
| 		 * Find solution using conjugate gradient descent
 | |
| 		 * @param x0: VectorConfig specifying initial estimate
 | |
| 		 * @return solution
 | |
| 		 */
 | |
| 		VectorConfig conjugateGradientDescent(const VectorConfig& x0, bool verbose =
 | |
| 				false, double epsilon = 1e-3, size_t maxIterations = 0) const;
 | |
| 
 | |
| 		/**
 | |
| 		 * shared pointer versions for MATLAB
 | |
| 		 */
 | |
| 		boost::shared_ptr<VectorConfig> conjugateGradientDescent_(
 | |
| 				const VectorConfig& x0, bool verbose = false, double epsilon = 1e-3,
 | |
| 				size_t maxIterations = 0) const;
 | |
|   };
 | |
| 
 | |
|   /**
 | |
|    * A linear system solver using factorization
 | |
|    */
 | |
|   template <class NonlinearGraph, class Config>
 | |
|   class Factorization {
 | |
|   private:
 | |
|   	boost::shared_ptr<const Ordering> ordering_;
 | |
|   	bool useOldEliminate_;
 | |
| 
 | |
|   public:
 | |
|   	Factorization(boost::shared_ptr<const Ordering> ordering, bool old=true)
 | |
| 		: ordering_(ordering), useOldEliminate_(old) {}
 | |
| 
 | |
|   	/**
 | |
|   	 * solve for the optimal displacement in the tangent space, and then solve
 | |
|   	 * the resulted linear system
 | |
|   	 */
 | |
|   	VectorConfig optimize(GaussianFactorGraph& fg) const {
 | |
|   		return fg.optimize(*ordering_, useOldEliminate_);
 | |
|   	}
 | |
| 
 | |
| 		/**
 | |
| 		 * linearize the non-linear graph around the current config
 | |
| 		 */
 | |
|   	boost::shared_ptr<GaussianFactorGraph> linearize(const NonlinearGraph& g, const Config& config) const {
 | |
|   		return g.linearize(config);
 | |
|   	}
 | |
|   };
 | |
| }
 |