484 lines
18 KiB
C++
484 lines
18 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file HessianFactor.cpp
|
|
* @author Richard Roberts
|
|
* @date Dec 8, 2010
|
|
*/
|
|
|
|
#include <gtsam/base/debug.h>
|
|
#include <gtsam/base/timing.h>
|
|
#include <gtsam/base/Matrix.h>
|
|
#include <gtsam/base/FastMap.h>
|
|
#include <gtsam/base/cholesky.h>
|
|
#include <gtsam/linear/linearExceptions.h>
|
|
#include <gtsam/linear/GaussianConditional.h>
|
|
#include <gtsam/linear/GaussianFactor.h>
|
|
#include <gtsam/linear/HessianFactor.h>
|
|
#include <gtsam/linear/JacobianFactor.h>
|
|
#include <gtsam/linear/GaussianFactorGraph.h>
|
|
|
|
#include <boost/foreach.hpp>
|
|
#include <boost/format.hpp>
|
|
#include <boost/make_shared.hpp>
|
|
#include <boost/tuple/tuple.hpp>
|
|
#ifdef __GNUC__
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wunused-variable"
|
|
#endif
|
|
#include <boost/bind.hpp>
|
|
#ifdef __GNUC__
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
#include <boost/assign/list_of.hpp>
|
|
#include <boost/range/adaptor/transformed.hpp>
|
|
#include <boost/range/adaptor/map.hpp>
|
|
#include <boost/range/join.hpp>
|
|
#include <boost/range/algorithm/copy.hpp>
|
|
|
|
#include <sstream>
|
|
#include <limits>
|
|
|
|
using namespace std;
|
|
using namespace boost::assign;
|
|
namespace br { using namespace boost::range; using namespace boost::adaptors; }
|
|
|
|
namespace gtsam {
|
|
|
|
/* ************************************************************************* */
|
|
string SlotEntry::toString() const {
|
|
ostringstream oss;
|
|
oss << "SlotEntry: slot=" << slot << ", dim=" << dimension;
|
|
return oss.str();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Scatter::Scatter(const GaussianFactorGraph& gfg, boost::optional<const Ordering&> ordering)
|
|
{
|
|
static const size_t none = std::numeric_limits<size_t>::max();
|
|
|
|
// First do the set union.
|
|
BOOST_FOREACH(const GaussianFactor::shared_ptr& factor, gfg) {
|
|
if(factor) {
|
|
for(GaussianFactor::const_iterator variable = factor->begin(); variable != factor->end(); ++variable) {
|
|
this->insert(make_pair(*variable, SlotEntry(none, factor->getDim(variable))));
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we have an ordering, pre-fill the ordered variables first
|
|
size_t slot = 0;
|
|
if(ordering) {
|
|
BOOST_FOREACH(Key key, *ordering) {
|
|
const_iterator entry = find(key);
|
|
if(entry == end())
|
|
throw std::invalid_argument(
|
|
"The ordering provided to the HessianFactor Scatter constructor\n"
|
|
"contained extra variables that did not appear in the factors to combine.");
|
|
at(key).slot = (slot ++);
|
|
}
|
|
}
|
|
|
|
// Next fill in the slot indices (we can only get these after doing the set
|
|
// union.
|
|
BOOST_FOREACH(value_type& var_slot, *this) {
|
|
if(var_slot.second.slot == none)
|
|
var_slot.second.slot = (slot ++);
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
HessianFactor::HessianFactor() :
|
|
info_(cref_list_of<1>(1))
|
|
{
|
|
linearTerm().setZero();
|
|
constantTerm() = 0.0;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
HessianFactor::HessianFactor(Key j, const Matrix& G, const Vector& g, double f) :
|
|
GaussianFactor(cref_list_of<1>(j)), info_(cref_list_of<2>(G.cols())(1))
|
|
{
|
|
if(G.rows() != G.cols() || G.rows() != g.size()) throw invalid_argument(
|
|
"Attempting to construct HessianFactor with inconsistent matrix and/or vector dimensions");
|
|
info_(0,0) = G;
|
|
info_(0,1) = g;
|
|
info_(1,1)(0,0) = f;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// error is 0.5*(x-mu)'*inv(Sigma)*(x-mu) = 0.5*(x'*G*x - 2*x'*G*mu + mu'*G*mu)
|
|
// where G = inv(Sigma), g = G*mu, f = mu'*G*mu = mu'*g
|
|
HessianFactor::HessianFactor(Key j, const Vector& mu, const Matrix& Sigma) :
|
|
GaussianFactor(cref_list_of<1>(j)),
|
|
info_(cref_list_of<2> (Sigma.cols()) (1) )
|
|
{
|
|
if (Sigma.rows() != Sigma.cols() || Sigma.rows() != mu.size()) throw invalid_argument(
|
|
"Attempting to construct HessianFactor with inconsistent matrix and/or vector dimensions");
|
|
info_(0,0) = Sigma.inverse(); // G
|
|
info_(0,1) = info_(0,0) * mu; // g
|
|
info_(1,1)(0,0) = mu.dot(info_(0,1).col(0)); // f
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
HessianFactor::HessianFactor(Key j1, Key j2,
|
|
const Matrix& G11, const Matrix& G12, const Vector& g1,
|
|
const Matrix& G22, const Vector& g2, double f) :
|
|
GaussianFactor(cref_list_of<2>(j1)(j2)),
|
|
info_(cref_list_of<3> (G11.cols()) (G22.cols()) (1) )
|
|
{
|
|
info_(0,0) = G11;
|
|
info_(0,1) = G12;
|
|
info_(0,2) = g1;
|
|
info_(1,1) = G22;
|
|
info_(1,2) = g2;
|
|
info_(2,2)(0,0) = f;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
HessianFactor::HessianFactor(Key j1, Key j2, Key j3,
|
|
const Matrix& G11, const Matrix& G12, const Matrix& G13, const Vector& g1,
|
|
const Matrix& G22, const Matrix& G23, const Vector& g2,
|
|
const Matrix& G33, const Vector& g3, double f) :
|
|
GaussianFactor(cref_list_of<3>(j1)(j2)(j3)),
|
|
info_(cref_list_of<4> (G11.cols()) (G22.cols()) (G33.cols()) (1) )
|
|
{
|
|
if(G11.rows() != G11.cols() || G11.rows() != G12.rows() || G11.rows() != G13.rows() || G11.rows() != g1.size() ||
|
|
G22.cols() != G12.cols() || G33.cols() != G13.cols() || G22.cols() != g2.size() || G33.cols() != g3.size())
|
|
throw invalid_argument("Inconsistent matrix and/or vector dimensions in HessianFactor constructor");
|
|
info_(0,0) = G11;
|
|
info_(0,1) = G12;
|
|
info_(0,2) = G13;
|
|
info_(0,3) = g1;
|
|
info_(1,1) = G22;
|
|
info_(1,2) = G23;
|
|
info_(1,3) = g2;
|
|
info_(2,2) = G33;
|
|
info_(2,3) = g3;
|
|
info_(3,3)(0,0) = f;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
namespace { DenseIndex _getSizeHF(const Vector& m) { return m.size(); } }
|
|
|
|
/* ************************************************************************* */
|
|
HessianFactor::HessianFactor(const std::vector<Key>& js, const std::vector<Matrix>& Gs,
|
|
const std::vector<Vector>& gs, double f) :
|
|
GaussianFactor(js), info_(br::join(gs | br::transformed(&_getSizeHF), cref_list_of<1,DenseIndex>(1)))
|
|
{
|
|
// Get the number of variables
|
|
size_t variable_count = js.size();
|
|
|
|
// Verify the provided number of entries in the vectors are consistent
|
|
if(gs.size() != variable_count || Gs.size() != (variable_count*(variable_count+1))/2)
|
|
throw invalid_argument("Inconsistent number of entries between js, Gs, and gs in HessianFactor constructor.\nThe number of keys provided \
|
|
in js must match the number of linear vector pieces in gs. The number of upper-diagonal blocks in Gs must be n*(n+1)/2");
|
|
|
|
// Verify the dimensions of each provided matrix are consistent
|
|
// Note: equations for calculating the indices derived from the "sum of an arithmetic sequence" formula
|
|
for(size_t i = 0; i < variable_count; ++i){
|
|
DenseIndex block_size = gs[i].size();
|
|
// Check rows
|
|
for(size_t j = 0; j < variable_count-i; ++j){
|
|
size_t index = i*(2*variable_count - i + 1)/2 + j;
|
|
if(Gs[index].rows() != block_size){
|
|
throw invalid_argument("Inconsistent matrix and/or vector dimensions in HessianFactor constructor");
|
|
}
|
|
}
|
|
// Check cols
|
|
for(size_t j = 0; j <= i; ++j){
|
|
size_t index = j*(2*variable_count - j + 1)/2 + (i-j);
|
|
if(Gs[index].cols() != block_size){
|
|
throw invalid_argument("Inconsistent matrix and/or vector dimensions in HessianFactor constructor");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fill in the blocks
|
|
size_t index = 0;
|
|
for(size_t i = 0; i < variable_count; ++i){
|
|
for(size_t j = i; j < variable_count; ++j){
|
|
info_(i, j) = Gs[index++];
|
|
}
|
|
info_(i, variable_count) = gs[i];
|
|
}
|
|
info_(variable_count, variable_count)(0,0) = f;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
namespace {
|
|
void _FromJacobianHelper(const JacobianFactor& jf, SymmetricBlockMatrix& info)
|
|
{
|
|
const SharedDiagonal& jfModel = jf.get_model();
|
|
if(jfModel)
|
|
{
|
|
if(jf.get_model()->isConstrained())
|
|
throw invalid_argument("Cannot construct HessianFactor from JacobianFactor with constrained noise model");
|
|
info.full().noalias() = jf.matrixObject().full().transpose() * jfModel->invsigmas().asDiagonal() *
|
|
jfModel->invsigmas().asDiagonal() * jf.matrixObject().full();
|
|
} else {
|
|
info.full().noalias() = jf.matrixObject().full().transpose() * jf.matrixObject().full();
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
HessianFactor::HessianFactor(const JacobianFactor& jf) :
|
|
GaussianFactor(jf), info_(SymmetricBlockMatrix::LikeActiveViewOf(jf.matrixObject()))
|
|
{
|
|
_FromJacobianHelper(jf, info_);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
HessianFactor::HessianFactor(const GaussianFactor& gf) :
|
|
GaussianFactor(gf)
|
|
{
|
|
// Copy the matrix data depending on what type of factor we're copying from
|
|
if(const JacobianFactor* jf = dynamic_cast<const JacobianFactor*>(&gf))
|
|
{
|
|
info_ = SymmetricBlockMatrix::LikeActiveViewOf(jf->matrixObject());
|
|
_FromJacobianHelper(*jf, info_);
|
|
}
|
|
else if(const HessianFactor* hf = dynamic_cast<const HessianFactor*>(&gf))
|
|
{
|
|
info_ = hf->info_;
|
|
}
|
|
else
|
|
{
|
|
throw std::invalid_argument("In HessianFactor(const GaussianFactor& gf), gf is neither a JacobianFactor nor a HessianFactor");
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
namespace {
|
|
DenseIndex _dimFromScatterEntry(const Scatter::value_type& key_slotentry) {
|
|
return key_slotentry.second.dimension; } }
|
|
|
|
/* ************************************************************************* */
|
|
HessianFactor::HessianFactor(const GaussianFactorGraph& factors,
|
|
boost::optional<const Scatter&> scatter)
|
|
{
|
|
boost::optional<Scatter> computedScatter;
|
|
if(!scatter) {
|
|
computedScatter = Scatter(factors);
|
|
scatter = computedScatter;
|
|
}
|
|
|
|
// Allocate and copy keys
|
|
gttic(allocate);
|
|
// Allocate with dimensions for each variable plus 1 at the end for the information vector
|
|
keys_.resize(scatter->size());
|
|
vector<DenseIndex> dims(scatter->size() + 1);
|
|
BOOST_FOREACH(const Scatter::value_type& key_slotentry, *scatter) {
|
|
keys_[key_slotentry.second.slot] = key_slotentry.first;
|
|
dims[key_slotentry.second.slot] = key_slotentry.second.dimension;
|
|
}
|
|
dims.back() = 1;
|
|
info_ = SymmetricBlockMatrix(dims);
|
|
info_.full().setZero();
|
|
gttoc(allocate);
|
|
|
|
// Form A' * A
|
|
gttic(update);
|
|
BOOST_FOREACH(const GaussianFactor::shared_ptr& factor, factors)
|
|
{
|
|
if(factor) {
|
|
if(const HessianFactor* hessian = dynamic_cast<const HessianFactor*>(factor.get()))
|
|
updateATA(*hessian, *scatter);
|
|
else if(const JacobianFactor* jacobian = dynamic_cast<const JacobianFactor*>(factor.get()))
|
|
updateATA(*jacobian, *scatter);
|
|
else
|
|
throw invalid_argument("GaussianFactor is neither Hessian nor Jacobian");
|
|
}
|
|
}
|
|
gttoc(update);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void HessianFactor::print(const std::string& s, const KeyFormatter& formatter) const {
|
|
cout << s << "\n";
|
|
cout << " keys: ";
|
|
for(const_iterator key=this->begin(); key!=this->end(); ++key)
|
|
cout << formatter(*key) << "(" << this->getDim(key) << ") ";
|
|
cout << "\n";
|
|
gtsam::print(Matrix(info_.range(0,info_.nBlocks(), 0,info_.nBlocks()).selfadjointView<Eigen::Upper>()), "Augmented information matrix: ");
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
bool HessianFactor::equals(const GaussianFactor& lf, double tol) const {
|
|
if(!dynamic_cast<const HessianFactor*>(&lf))
|
|
return false;
|
|
else {
|
|
if(!Factor::equals(lf, tol))
|
|
return false;
|
|
Matrix thisMatrix = this->info_.full().selfadjointView<Eigen::Upper>();
|
|
thisMatrix(thisMatrix.rows()-1, thisMatrix.cols()-1) = 0.0;
|
|
Matrix rhsMatrix = static_cast<const HessianFactor&>(lf).info_.full().selfadjointView<Eigen::Upper>();
|
|
rhsMatrix(rhsMatrix.rows()-1, rhsMatrix.cols()-1) = 0.0;
|
|
return equal_with_abs_tol(thisMatrix, rhsMatrix, tol);
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix HessianFactor::augmentedInformation() const
|
|
{
|
|
return info_.full().selfadjointView<Eigen::Upper>();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix HessianFactor::information() const
|
|
{
|
|
return info_.range(0, this->size(), 0, this->size()).selfadjointView<Eigen::Upper>();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix HessianFactor::augmentedJacobian() const
|
|
{
|
|
return JacobianFactor(*this).augmentedJacobian();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
std::pair<Matrix, Vector> HessianFactor::jacobian() const
|
|
{
|
|
return JacobianFactor(*this).jacobian();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
double HessianFactor::error(const VectorValues& c) const {
|
|
// error 0.5*(f - 2*x'*g + x'*G*x)
|
|
const double f = constantTerm();
|
|
double xtg = 0, xGx = 0;
|
|
// extract the relevant subset of the VectorValues
|
|
// NOTE may not be as efficient
|
|
const Vector x = c.vector(this->keys());
|
|
xtg = x.dot(linearTerm());
|
|
xGx = x.transpose() * info_.range(0, this->size(), 0, this->size()).selfadjointView<Eigen::Upper>() * x;
|
|
return 0.5 * (f - 2.0 * xtg + xGx);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void HessianFactor::updateATA(const HessianFactor& update, const Scatter& scatter)
|
|
{
|
|
// This function updates 'combined' with the information in 'update'. 'scatter' maps variables in
|
|
// the update factor to slots in the combined factor.
|
|
|
|
// First build an array of slots
|
|
gttic(slots);
|
|
//size_t* slots = (size_t*)alloca(sizeof(size_t)*update.size()); // FIXME: alloca is bad, just ask Google.
|
|
vector<DenseIndex> slots(update.size());
|
|
DenseIndex slot = 0;
|
|
BOOST_FOREACH(Key j, update) {
|
|
slots[slot] = scatter.at(j).slot;
|
|
++ slot;
|
|
}
|
|
gttoc(slots);
|
|
|
|
// Apply updates to the upper triangle
|
|
gttic(update);
|
|
for(DenseIndex j2=0; j2<update.info_.nBlocks(); ++j2) {
|
|
DenseIndex slot2 = (j2 == update.size()) ? this->info_.nBlocks()-1 : slots[j2];
|
|
for(DenseIndex j1=0; j1<=j2; ++j1) {
|
|
DenseIndex slot1 = (j1 == update.size()) ? this->info_.nBlocks()-1 : slots[j1];
|
|
if(slot2 > slot1)
|
|
info_(slot1, slot2).noalias() += update.info_(j1, j2);
|
|
else if(slot1 > slot2)
|
|
info_(slot2, slot1).noalias() += update.info_(j1, j2).transpose();
|
|
else
|
|
info_(slot1, slot2).triangularView<Eigen::Upper>() += update.info_(j1, j2);
|
|
}
|
|
}
|
|
gttoc(update);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void HessianFactor::updateATA(const JacobianFactor& update, const Scatter& scatter)
|
|
{
|
|
if(update.rows() > 0) // Zero-row Jacobians are treated specially
|
|
updateATA(HessianFactor(update), scatter);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
GaussianConditional::shared_ptr HessianFactor::splitEliminatedFactor(size_t nrFrontals)
|
|
{
|
|
gttic(HessianFactor_splitEliminatedFactor);
|
|
|
|
// Create one big conditionals with many frontal variables.
|
|
gttic(Construct_conditional);
|
|
const size_t varDim = info_.offset(nrFrontals);
|
|
VerticalBlockMatrix Ab = VerticalBlockMatrix::LikeActiveViewOf(info_, varDim);
|
|
Ab.full() = info_.range(0, nrFrontals, 0, info_.nBlocks());
|
|
GaussianConditional::shared_ptr conditional = boost::make_shared<GaussianConditional>(
|
|
keys_, nrFrontals, Ab);
|
|
gttoc(Construct_conditional);
|
|
|
|
gttic(Remaining_factor);
|
|
// Take lower-right block of Ab_ to get the new factor
|
|
info_.blockStart() = nrFrontals;
|
|
// Assign the keys
|
|
keys_.erase(begin(), begin() + nrFrontals);
|
|
gttoc(Remaining_factor);
|
|
|
|
return conditional;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
GaussianFactor::shared_ptr HessianFactor::negate() const
|
|
{
|
|
shared_ptr result = boost::make_shared<This>(*this);
|
|
result->info_.full() = -result->info_.full(); // Negate the information matrix of the result
|
|
return result;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
std::pair<boost::shared_ptr<GaussianConditional>, boost::shared_ptr<HessianFactor> >
|
|
EliminateCholesky(const GaussianFactorGraph& factors, const Ordering& keys)
|
|
{
|
|
gttic(EliminateCholesky);
|
|
|
|
// Build joint factor
|
|
HessianFactor::shared_ptr jointFactor;
|
|
try {
|
|
jointFactor = boost::make_shared<HessianFactor>(factors, Scatter(factors, keys));
|
|
} catch(std::invalid_argument&) {
|
|
throw InvalidDenseElimination(
|
|
"EliminateCholesky was called with a request to eliminate variables that are not\n"
|
|
"involved in the provided factors.");
|
|
}
|
|
|
|
// Do dense elimination
|
|
if(!choleskyPartial(jointFactor->info_.matrix(), jointFactor->info_.offset(keys.size())))
|
|
throw IndeterminantLinearSystemException(keys.front());
|
|
|
|
// Split conditional
|
|
GaussianConditional::shared_ptr conditional = jointFactor->splitEliminatedFactor(keys.size());
|
|
|
|
return make_pair(conditional, jointFactor);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
std::pair<boost::shared_ptr<GaussianConditional>, boost::shared_ptr<GaussianFactor> >
|
|
EliminatePreferCholesky(const GaussianFactorGraph& factors, const Ordering& keys)
|
|
{
|
|
gttic(EliminatePreferCholesky);
|
|
|
|
// If any JacobianFactors have constrained noise models, we have to convert
|
|
// all factors to JacobianFactors. Otherwise, we can convert all factors
|
|
// to HessianFactors. This is because QR can handle constrained noise
|
|
// models but Cholesky cannot.
|
|
if (hasConstraints(factors))
|
|
return EliminateQR(factors, keys);
|
|
else
|
|
return EliminateCholesky(factors, keys);
|
|
}
|
|
|
|
} // gtsam
|