gtsam/gtsam/geometry/Unit3.cpp

176 lines
5.2 KiB
C++

/* ----------------------------------------------------------------------------
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/*
* @file Unit3.h
* @date Feb 02, 2011
* @author Can Erdogan
* @author Frank Dellaert
* @author Alex Trevor
* @author Zhaoyang Lv
* @brief The Unit3 class - basically a point on a unit sphere
*/
#include <gtsam/geometry/Unit3.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/config.h> // for GTSAM_USE_TBB
#ifdef __clang__
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wunused-variable"
#endif
#include <boost/random/uniform_on_sphere.hpp>
#ifdef __clang__
# pragma clang diagnostic pop
#endif
#ifdef GTSAM_USE_TBB
#include <tbb/mutex.h>
#endif
#include <boost/random/variate_generator.hpp>
#include <iostream>
#include <limits>
using namespace std;
namespace gtsam {
/* ************************************************************************* */
Unit3 Unit3::FromPoint3(const Point3& point, OptionalJacobian<2,3> H) {
Unit3 direction(point);
if (H) {
// 3*3 Derivative of representation with respect to point is 3*3:
Matrix3 D_p_point;
point.normalize(D_p_point); // TODO, this calculates norm a second time :-(
// Calculate the 2*3 Jacobian
*H << direction.basis().transpose() * D_p_point;
}
return direction;
}
/* ************************************************************************* */
Unit3 Unit3::Random(boost::mt19937 & rng) {
// TODO allow any engine without including all of boost :-(
boost::uniform_on_sphere<double> randomDirection(3);
// This variate_generator object is required for versions of boost somewhere
// around 1.46, instead of drawing directly using boost::uniform_on_sphere(rng).
boost::variate_generator<boost::mt19937&, boost::uniform_on_sphere<double> > generator(
rng, randomDirection);
vector<double> d = generator();
return Unit3(d[0], d[1], d[2]);
}
#ifdef GTSAM_USE_TBB
tbb::mutex unit3BasisMutex;
#endif
/* ************************************************************************* */
const Matrix32& Unit3::basis() const {
#ifdef GTSAM_USE_TBB
tbb::mutex::scoped_lock lock(unit3BasisMutex);
#endif
// Return cached version if exists
if (B_) return *B_;
// Get the axis of rotation with the minimum projected length of the point
Vector3 axis;
double mx = fabs(p_.x()), my = fabs(p_.y()), mz = fabs(p_.z());
if ((mx <= my) && (mx <= mz))
axis = Vector3(1.0, 0.0, 0.0);
else if ((my <= mx) && (my <= mz))
axis = Vector3(0.0, 1.0, 0.0);
else if ((mz <= mx) && (mz <= my))
axis = Vector3(0.0, 0.0, 1.0);
else
assert(false);
// Create the two basis vectors
Vector3 b1 = p_.cross(axis).normalized();
Vector3 b2 = p_.cross(b1).normalized();
// Create the basis matrix
B_.reset(Matrix32());
(*B_) << b1, b2;
return *B_;
}
/* ************************************************************************* */
/// The print fuction
void Unit3::print(const std::string& s) const {
cout << s << ":" << p_ << endl;
}
/* ************************************************************************* */
Matrix3 Unit3::skew() const {
return skewSymmetric(p_.x(), p_.y(), p_.z());
}
/* ************************************************************************* */
Vector2 Unit3::error(const Unit3& q, OptionalJacobian<2,2> H) const {
// 2D error is equal to B'*q, as B is 3x2 matrix and q is 3x1
Vector2 xi = basis().transpose() * q.p_;
if (H)
*H = basis().transpose() * q.basis();
return xi;
}
/* ************************************************************************* */
double Unit3::distance(const Unit3& q, OptionalJacobian<1,2> H) const {
Matrix2 H_;
Vector2 xi = error(q, H_);
double theta = xi.norm();
if (H)
*H = (xi.transpose() / theta) * H_;
return theta;
}
/* ************************************************************************* */
Unit3 Unit3::retract(const Vector2& v) const {
// Compute the 3D xi_hat vector
Vector3 xi_hat = basis() * v;
double theta = xi_hat.norm();
// Treat case of very small v differently
if (theta < std::numeric_limits<double>::epsilon()) {
return Unit3(cos(theta) * p_ + xi_hat);
}
Vector3 exp_p_xi_hat =
cos(theta) * p_ + xi_hat * (sin(theta) / theta);
return Unit3(exp_p_xi_hat);
}
/* ************************************************************************* */
Vector2 Unit3::localCoordinates(const Unit3& other) const {
const double x = p_.dot(other.p_);
// Crucial quantity here is y = theta/sin(theta) with theta=acos(x)
// Now, y = acos(x) / sin(acos(x)) = acos(x)/sqrt(1-x^2)
// We treat the special case 1 and -1 below
const double x2 = x * x;
const double z = 1 - x2;
double y;
if (z < std::numeric_limits<double>::epsilon()) {
if (x > 0) // first order expansion at x=1
y = 1.0 - (x - 1.0) / 3.0;
else // cop out
return Vector2(M_PI, 0.0);
} else {
// no special case
y = acos(x) / sqrt(z);
}
return basis().transpose() * y * (other.p_ - x * p_);
}
/* ************************************************************************* */
}