gtsam/python/gtsam/tests/test_HybridBayesNet.py

101 lines
3.5 KiB
Python

"""
GTSAM Copyright 2010-2022, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Unit tests for Hybrid Values.
Author: Frank Dellaert
"""
# pylint: disable=invalid-name, no-name-in-module, no-member
import math
import unittest
import numpy as np
from gtsam.symbol_shorthand import A, X
from gtsam.utils.test_case import GtsamTestCase
from gtsam import (DiscreteConditional, DiscreteKeys, DiscreteValues,
GaussianConditional, GaussianMixture, HybridBayesNet,
HybridValues, VectorValues, noiseModel)
class TestHybridBayesNet(GtsamTestCase):
"""Unit tests for HybridValues."""
def test_evaluate(self):
"""Test evaluate for a hybrid Bayes net P(X0|X1) P(X1|Asia) P(Asia)."""
asiaKey = A(0)
Asia = (asiaKey, 2)
# Create the continuous conditional
I_1x1 = np.eye(1)
conditional = GaussianConditional.FromMeanAndStddev(
X(0), 2 * I_1x1, X(1), [-4], 5.0)
# Create the noise models
model0 = noiseModel.Diagonal.Sigmas([2.0])
model1 = noiseModel.Diagonal.Sigmas([3.0])
# Create the conditionals
conditional0 = GaussianConditional(X(1), [5], I_1x1, model0)
conditional1 = GaussianConditional(X(1), [2], I_1x1, model1)
discrete_keys = DiscreteKeys()
discrete_keys.push_back(Asia)
# Create hybrid Bayes net.
bayesNet = HybridBayesNet()
bayesNet.push_back(conditional)
bayesNet.push_back(
GaussianMixture([X(1)], [], discrete_keys,
[conditional0, conditional1]))
bayesNet.push_back(DiscreteConditional(Asia, "99/1"))
# Create values at which to evaluate.
values = HybridValues()
continuous = VectorValues()
continuous.insert(X(0), [-6])
continuous.insert(X(1), [1])
values.insert(continuous)
discrete = DiscreteValues()
discrete[asiaKey] = 0
values.insert(discrete)
conditionalProbability = conditional.evaluate(values.continuous())
mixtureProbability = conditional0.evaluate(values.continuous())
self.assertAlmostEqual(conditionalProbability * mixtureProbability *
0.99,
bayesNet.evaluate(values),
places=5)
# Check logProbability
self.assertAlmostEqual(bayesNet.logProbability(values),
math.log(bayesNet.evaluate(values)))
# Check invariance for all conditionals:
self.check_invariance(bayesNet.at(0).asGaussian(), continuous)
self.check_invariance(bayesNet.at(0).asGaussian(), values)
self.check_invariance(bayesNet.at(0), values)
self.check_invariance(bayesNet.at(1), values)
self.check_invariance(bayesNet.at(2).asDiscrete(), discrete)
self.check_invariance(bayesNet.at(2).asDiscrete(), values)
self.check_invariance(bayesNet.at(2), values)
def check_invariance(self, conditional, values):
"""Check invariance for given conditional."""
probability = conditional.evaluate(values)
self.assertTrue(probability >= 0.0)
logProb = conditional.logProbability(values)
self.assertAlmostEqual(probability, np.exp(logProb))
expected = conditional.logNormalizationConstant() - \
conditional.error(values)
self.assertAlmostEqual(logProb, expected)
if __name__ == "__main__":
unittest.main()