gtsam/gtsam/hybrid/HybridBayesNet.cpp

364 lines
13 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010-2022, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file HybridBayesNet.cpp
* @brief A Bayes net of Gaussian Conditionals indexed by discrete keys.
* @author Fan Jiang
* @author Varun Agrawal
* @author Shangjie Xue
* @author Frank Dellaert
* @date January 2022
*/
#include <gtsam/discrete/DiscreteBayesNet.h>
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridValues.h>
// In Wrappers we have no access to this so have a default ready
static std::mt19937_64 kRandomNumberGenerator(42);
namespace gtsam {
/* ************************************************************************* */
void HybridBayesNet::print(const std::string &s,
const KeyFormatter &formatter) const {
Base::print(s, formatter);
}
/* ************************************************************************* */
bool HybridBayesNet::equals(const This &bn, double tol) const {
return Base::equals(bn, tol);
}
/* ************************************************************************* */
DecisionTreeFactor::shared_ptr HybridBayesNet::discreteConditionals() const {
AlgebraicDecisionTree<Key> decisionTree;
// The canonical decision tree factor which will get
// the discrete conditionals added to it.
DecisionTreeFactor dtFactor;
for (auto &&conditional : *this) {
if (conditional->isDiscrete()) {
// Convert to a DecisionTreeFactor and add it to the main factor.
DecisionTreeFactor f(*conditional->asDiscrete());
dtFactor = dtFactor * f;
}
}
return boost::make_shared<DecisionTreeFactor>(dtFactor);
}
/* ************************************************************************* */
/**
* @brief Helper function to get the pruner functional.
*
* @param prunedDecisionTree The prob. decision tree of only discrete keys.
* @param conditional Conditional to prune. Used to get full assignment.
* @return std::function<double(const Assignment<Key> &, double)>
*/
std::function<double(const Assignment<Key> &, double)> prunerFunc(
const DecisionTreeFactor &prunedDecisionTree,
const HybridConditional &conditional) {
// Get the discrete keys as sets for the decision tree
// and the Gaussian mixture.
std::set<DiscreteKey> decisionTreeKeySet =
DiscreteKeysAsSet(prunedDecisionTree.discreteKeys());
std::set<DiscreteKey> conditionalKeySet =
DiscreteKeysAsSet(conditional.discreteKeys());
auto pruner = [prunedDecisionTree, decisionTreeKeySet, conditionalKeySet](
const Assignment<Key> &choices,
double probability) -> double {
// This corresponds to 0 probability
double pruned_prob = 0.0;
// typecast so we can use this to get probability value
DiscreteValues values(choices);
// Case where the Gaussian mixture has the same
// discrete keys as the decision tree.
if (conditionalKeySet == decisionTreeKeySet) {
if (prunedDecisionTree(values) == 0) {
return pruned_prob;
} else {
return probability;
}
} else {
// Due to branch merging (aka pruning) in DecisionTree, it is possible we
// get a `values` which doesn't have the full set of keys.
std::set<Key> valuesKeys;
for (auto kvp : values) {
valuesKeys.insert(kvp.first);
}
std::set<Key> conditionalKeys;
for (auto kvp : conditionalKeySet) {
conditionalKeys.insert(kvp.first);
}
// If true, then values is missing some keys
if (conditionalKeys != valuesKeys) {
// Get the keys present in conditionalKeys but not in valuesKeys
std::vector<Key> missing_keys;
std::set_difference(conditionalKeys.begin(), conditionalKeys.end(),
valuesKeys.begin(), valuesKeys.end(),
std::back_inserter(missing_keys));
// Insert missing keys with a default assignment.
for (auto missing_key : missing_keys) {
values[missing_key] = 0;
}
}
// Now we generate the full assignment by enumerating
// over all keys in the prunedDecisionTree.
// First we find the differing keys
std::vector<DiscreteKey> set_diff;
std::set_difference(decisionTreeKeySet.begin(), decisionTreeKeySet.end(),
conditionalKeySet.begin(), conditionalKeySet.end(),
std::back_inserter(set_diff));
// Now enumerate over all assignments of the differing keys
const std::vector<DiscreteValues> assignments =
DiscreteValues::CartesianProduct(set_diff);
for (const DiscreteValues &assignment : assignments) {
DiscreteValues augmented_values(values);
augmented_values.insert(assignment);
// If any one of the sub-branches are non-zero,
// we need this probability.
if (prunedDecisionTree(augmented_values) > 0.0) {
return probability;
}
}
// If we are here, it means that all the sub-branches are 0,
// so we prune.
return pruned_prob;
}
};
return pruner;
}
/* ************************************************************************* */
void HybridBayesNet::updateDiscreteConditionals(
const DecisionTreeFactor &prunedDecisionTree) {
KeyVector prunedTreeKeys = prunedDecisionTree.keys();
// Loop with index since we need it later.
for (size_t i = 0; i < this->size(); i++) {
HybridConditional::shared_ptr conditional = this->at(i);
if (conditional->isDiscrete()) {
auto discrete = conditional->asDiscrete();
// Apply prunerFunc to the underlying AlgebraicDecisionTree
auto discreteTree =
boost::dynamic_pointer_cast<DecisionTreeFactor::ADT>(discrete);
DecisionTreeFactor::ADT prunedDiscreteTree =
discreteTree->apply(prunerFunc(prunedDecisionTree, *conditional));
// Create the new (hybrid) conditional
KeyVector frontals(discrete->frontals().begin(),
discrete->frontals().end());
auto prunedDiscrete = boost::make_shared<DiscreteLookupTable>(
frontals.size(), conditional->discreteKeys(), prunedDiscreteTree);
conditional = boost::make_shared<HybridConditional>(prunedDiscrete);
// Add it back to the BayesNet
this->at(i) = conditional;
}
}
}
/* ************************************************************************* */
HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) {
// Get the decision tree of only the discrete keys
auto discreteConditionals = this->discreteConditionals();
const auto decisionTree = discreteConditionals->prune(maxNrLeaves);
this->updateDiscreteConditionals(decisionTree);
/* To Prune, we visitWith every leaf in the GaussianMixture.
* For each leaf, using the assignment we can check the discrete decision tree
* for 0.0 probability, then just set the leaf to a nullptr.
*
* We can later check the GaussianMixture for just nullptrs.
*/
HybridBayesNet prunedBayesNetFragment;
// Go through all the conditionals in the
// Bayes Net and prune them as per decisionTree.
for (auto &&conditional : *this) {
if (auto gm = conditional->asMixture()) {
// Make a copy of the Gaussian mixture and prune it!
auto prunedGaussianMixture = boost::make_shared<GaussianMixture>(*gm);
prunedGaussianMixture->prune(decisionTree); // imperative :-(
// Type-erase and add to the pruned Bayes Net fragment.
prunedBayesNetFragment.push_back(prunedGaussianMixture);
} else {
// Add the non-GaussianMixture conditional
prunedBayesNetFragment.push_back(conditional);
}
}
return prunedBayesNetFragment;
}
/* ************************************************************************* */
GaussianBayesNet HybridBayesNet::choose(
const DiscreteValues &assignment) const {
GaussianBayesNet gbn;
for (auto &&conditional : *this) {
if (auto gm = conditional->asMixture()) {
// If conditional is hybrid, select based on assignment.
gbn.push_back((*gm)(assignment));
} else if (auto gc = conditional->asGaussian()) {
// If continuous only, add Gaussian conditional.
gbn.push_back(gc);
} else if (auto dc = conditional->asDiscrete()) {
// If conditional is discrete-only, we simply continue.
continue;
}
}
return gbn;
}
/* ************************************************************************* */
HybridValues HybridBayesNet::optimize() const {
// Collect all the discrete factors to compute MPE
DiscreteBayesNet discrete_bn;
for (auto &&conditional : *this) {
if (conditional->isDiscrete()) {
discrete_bn.push_back(conditional->asDiscrete());
}
}
// Solve for the MPE
DiscreteValues mpe = DiscreteFactorGraph(discrete_bn).optimize();
// Given the MPE, compute the optimal continuous values.
return HybridValues(optimize(mpe), mpe);
}
/* ************************************************************************* */
VectorValues HybridBayesNet::optimize(const DiscreteValues &assignment) const {
GaussianBayesNet gbn = choose(assignment);
// Check if there exists a nullptr in the GaussianBayesNet
// If yes, return an empty VectorValues
if (std::find(gbn.begin(), gbn.end(), nullptr) != gbn.end()) {
return VectorValues();
}
return gbn.optimize();
}
/* ************************************************************************* */
HybridValues HybridBayesNet::sample(const HybridValues &given,
std::mt19937_64 *rng) const {
DiscreteBayesNet dbn;
for (auto &&conditional : *this) {
if (conditional->isDiscrete()) {
// If conditional is discrete-only, we add to the discrete Bayes net.
dbn.push_back(conditional->asDiscrete());
}
}
// Sample a discrete assignment.
const DiscreteValues assignment = dbn.sample(given.discrete());
// Select the continuous Bayes net corresponding to the assignment.
GaussianBayesNet gbn = choose(assignment);
// Sample from the Gaussian Bayes net.
VectorValues sample = gbn.sample(given.continuous(), rng);
return {sample, assignment};
}
/* ************************************************************************* */
HybridValues HybridBayesNet::sample(std::mt19937_64 *rng) const {
HybridValues given;
return sample(given, rng);
}
/* ************************************************************************* */
HybridValues HybridBayesNet::sample(const HybridValues &given) const {
return sample(given, &kRandomNumberGenerator);
}
/* ************************************************************************* */
HybridValues HybridBayesNet::sample() const {
return sample(&kRandomNumberGenerator);
}
/* ************************************************************************* */
AlgebraicDecisionTree<Key> HybridBayesNet::logProbability(
const VectorValues &continuousValues) const {
AlgebraicDecisionTree<Key> result(0.0);
// Iterate over each conditional.
for (auto &&conditional : *this) {
if (auto gm = conditional->asMixture()) {
// If conditional is hybrid, select based on assignment and compute
// logProbability.
result = result + gm->logProbability(continuousValues);
} else if (auto gc = conditional->asGaussian()) {
// If continuous, get the (double) logProbability and add it to the
// result
double logProbability = gc->logProbability(continuousValues);
// Add the computed logProbability to every leaf of the logProbability
// tree.
result = result.apply([logProbability](double leaf_value) {
return leaf_value + logProbability;
});
} else if (auto dc = conditional->asDiscrete()) {
// If discrete, add the discrete logProbability in the right branch
result = result.apply(
[dc](const Assignment<Key> &assignment, double leaf_value) {
return leaf_value + dc->logProbability(DiscreteValues(assignment));
});
}
}
return result;
}
/* ************************************************************************* */
AlgebraicDecisionTree<Key> HybridBayesNet::evaluate(
const VectorValues &continuousValues) const {
AlgebraicDecisionTree<Key> tree = this->logProbability(continuousValues);
return tree.apply([](double log) { return exp(log); });
}
/* ************************************************************************* */
double HybridBayesNet::evaluate(const HybridValues &values) const {
return exp(logProbability(values));
}
/* ************************************************************************* */
HybridGaussianFactorGraph HybridBayesNet::toFactorGraph(
const VectorValues &measurements) const {
HybridGaussianFactorGraph fg;
// For all nodes in the Bayes net, if its frontal variable is in measurements,
// replace it by a likelihood factor:
for (auto &&conditional : *this) {
if (conditional->frontalsIn(measurements)) {
if (auto gc = conditional->asGaussian()) {
fg.push_back(gc->likelihood(measurements));
} else if (auto gm = conditional->asMixture()) {
fg.push_back(gm->likelihood(measurements));
} else {
throw std::runtime_error("Unknown conditional type");
}
} else {
fg.push_back(conditional);
}
}
return fg;
}
} // namespace gtsam