gtsam/cpp/iterative-inl.h

132 lines
3.5 KiB
C++

/*
* iterative-inl.h
* @brief Iterative methods, template implementation
* @author Frank Dellaert
* Created on: Dec 28, 2009
*/
#pragma once
#include "GaussianFactorGraph.h"
#include "iterative.h"
using namespace std;
namespace gtsam {
/* ************************************************************************* */
// state for CG method
template<class S, class V, class E>
struct CGState {
bool steepest, verbose;
double gamma, threshold;
size_t k, maxIterations, reset;
V g, d;
E Ad;
/** constructor */
CGState(const S& Ab, const V& x, bool verb, double epsilon,
double epsilon_abs, size_t maxIt, bool steep) {
k = 0;
verbose = verb;
steepest = steep;
maxIterations = (maxIt > 0) ? maxIt : dim(x) * (steepest ? 10 : 1);
reset = (size_t) (sqrt(dim(x)) + 0.5); // when to reset
// Start with g0 = A'*(A*x0-b), d0 = - g0
// i.e., first step is in direction of negative gradient
g = Ab.gradient(x);
d = g; // instead of negating gradient, alpha will be negated
// init gamma and calculate threshold
gamma = dot(g, g);
threshold = ::max(epsilon_abs, epsilon * epsilon * gamma);
// Allocate and calculate A*d for first iteration
if (gamma > epsilon) Ad = Ab * d;
}
/** print */
void print(const V& x) {
cout << "iteration = " << k << endl;
gtsam::print(x,"x");
gtsam::print(g, "g");
cout << "dotg = " << gamma << endl;
gtsam::print(d, "d");
gtsam::print(Ad, "Ad");
}
/** step the solution */
double takeOptimalStep(V& x) {
// TODO: can we use gamma instead of dot(d,g) ????? Answer not trivial
double alpha = -dot(d, g) / dot(Ad, Ad); // calculate optimal step-size
axpy(alpha, d, x); // // do step in new search direction, x += alpha*d
return alpha;
}
/** take a step, return true if converged */
bool step(const S& Ab, V& x) {
k += 1; // increase iteration number
double alpha = takeOptimalStep(x);
if (k >= maxIterations) return true; //---------------------------------->
// update gradient (or re-calculate at reset time)
if (k % reset == 0)
g = Ab.gradient(x);
else
// axpy(alpha, Ab ^ Ad, g); // g += alpha*(Ab^Ad)
Ab.transposeMultiplyAdd(alpha, Ad, g);
// check for convergence
double new_gamma = dot(g, g);
if (verbose) cout << "iteration " << k << ": alpha = " << alpha
<< ", dotg = " << new_gamma << endl;
if (new_gamma < threshold) return true; //---------------------------------->
// calculate new search direction
if (steepest)
d = g;
else {
double beta = new_gamma / gamma;
// d = g + d*beta;
scal(beta, d);
axpy(1.0, g, d);
}
gamma = new_gamma;
// In-place recalculation Ad <- A*d to avoid re-allocating Ad
Ab.multiplyInPlace(d, Ad);
return false;
}
};
/**
* conjugate gradient method.
* S: linear system, V: step vector, E: errors
*/
template<class S, class V, class E>
V conjugateGradients(const S& Ab, V x, bool verbose, double epsilon,
double epsilon_abs, size_t maxIterations, bool steepest = false) {
CGState<S, V, E> state(Ab, x, verbose, epsilon, epsilon_abs, maxIterations,
steepest);
if (state.gamma < state.threshold) return x;
if (verbose) cout << "CG: epsilon = " << epsilon << ", maxIterations = "
<< state.maxIterations << ", ||g0||^2 = " << state.gamma
<< ", threshold = " << state.threshold << endl;
// loop maxIterations times
while (!state.step(Ab, x))
;
return x;
}
/* ************************************************************************* */
} // namespace gtsam