227 lines
8.7 KiB
Matlab
227 lines
8.7 KiB
Matlab
%close all
|
|
%clc
|
|
|
|
import gtsam.*;
|
|
|
|
%% Read metadata and compute relative sensor pose transforms
|
|
IMU_metadata = importdata('KittiEquivBiasedImu_metadata.txt');
|
|
IMU_metadata = cell2struct(num2cell(IMU_metadata.data), IMU_metadata.colheaders, 2);
|
|
IMUinBody = Pose3.Expmap([
|
|
IMU_metadata.BodyPtx; IMU_metadata.BodyPty; IMU_metadata.BodyPtz;
|
|
IMU_metadata.BodyPrx; IMU_metadata.BodyPry; IMU_metadata.BodyPrz; ]);
|
|
if ~IMUinBody.equals(Pose3, 1e-5)
|
|
error 'Currently only support IMUinBody is identity, i.e. IMU and body frame are the same';
|
|
end
|
|
|
|
VO_metadata = importdata('KittiRelativePose_metadata.txt');
|
|
VO_metadata = cell2struct(num2cell(VO_metadata.data), VO_metadata.colheaders, 2);
|
|
VOinBody = Pose3.Expmap([
|
|
VO_metadata.BodyPtx; VO_metadata.BodyPty; VO_metadata.BodyPtz;
|
|
VO_metadata.BodyPrx; VO_metadata.BodyPry; VO_metadata.BodyPrz; ]);
|
|
|
|
GPS_metadata = importdata('KittiGps_metadata.txt');
|
|
GPS_metadata = cell2struct(num2cell(GPS_metadata.data), GPS_metadata.colheaders, 2);
|
|
GPSinBody = Pose3.Expmap([
|
|
GPS_metadata.BodyPtx; GPS_metadata.BodyPty; GPS_metadata.BodyPtz;
|
|
GPS_metadata.BodyPrx; GPS_metadata.BodyPry; GPS_metadata.BodyPrz; ]);
|
|
|
|
VOinIMU = IMUinBody.inverse().compose(VOinBody);
|
|
GPSinIMU = IMUinBody.inverse().compose(GPSinBody);
|
|
|
|
%% Read data and change coordinate frame of GPS and VO measurements to IMU frame
|
|
IMU_data = importdata('KittiEquivBiasedImu.txt');
|
|
IMU_data = cell2struct(num2cell(IMU_data.data), IMU_data.colheaders, 2);
|
|
imum = cellfun(@(x) x', num2cell([ [IMU_data.accelX]' [IMU_data.accelY]' [IMU_data.accelZ]' [IMU_data.omegaX]' [IMU_data.omegaY]' [IMU_data.omegaZ]' ], 2), 'UniformOutput', false);
|
|
[IMU_data.acc_omega] = deal(imum{:});
|
|
IMU_data = rmfield(IMU_data, { 'accelX' 'accelY' 'accelZ' 'omegaX' 'omegaY' 'omegaZ' });
|
|
clear imum
|
|
|
|
VO_data = importdata('KittiRelativePose.txt');
|
|
VO_data = cell2struct(num2cell(VO_data.data), VO_data.colheaders, 2);
|
|
% Merge relative pose fields and convert to Pose3
|
|
logposes = [ [VO_data.dtx]' [VO_data.dty]' [VO_data.dtz]' [VO_data.drx]' [VO_data.dry]' [VO_data.drz]' ];
|
|
logposes = num2cell(logposes, 2);
|
|
relposes = arrayfun(@(x) {gtsam.Pose3.Expmap(x{:}')}, logposes);
|
|
relposes = arrayfun(@(x) {VOinIMU.compose(x{:}).compose(VOinIMU.inverse())}, relposes);
|
|
[VO_data.RelativePose] = deal(relposes{:});
|
|
VO_data = rmfield(VO_data, { 'dtx' 'dty' 'dtz' 'drx' 'dry' 'drz' });
|
|
clear logposes relposes
|
|
|
|
GPS_data = importdata('KittiGps.txt');
|
|
GPS_data = cell2struct(num2cell(GPS_data.data), GPS_data.colheaders, 2);
|
|
|
|
%% Set initial conditions for the estimated trajectory
|
|
disp('TODO: we have GPS so this initialization is not right')
|
|
currentPoseGlobal = Pose3; % initial pose is the reference frame (navigation frame)
|
|
currentVelocityGlobal = [0;0;0]; % the vehicle is stationary at the beginning
|
|
bias_acc = [0;0;0]; % we initialize accelerometer biases to zero
|
|
bias_omega = [0;0;0]; % we initialize gyro biases to zero
|
|
|
|
%% Solver object
|
|
isamParams = ISAM2Params;
|
|
isamParams.setRelinearizeSkip(1);
|
|
isam = gtsam.ISAM2(isamParams);
|
|
|
|
%% create nonlinear factor graph
|
|
factors = NonlinearFactorGraph;
|
|
values = Values;
|
|
|
|
%% Create prior on initial pose, velocity, and biases
|
|
sigma_init_x = 1.0;
|
|
sigma_init_v = 1.0;
|
|
sigma_init_b = 1.0;
|
|
|
|
values.insert(symbol('x',0), currentPoseGlobal);
|
|
values.insert(symbol('v',0), LieVector(currentVelocityGlobal) );
|
|
values.insert(symbol('b',0), imuBias.ConstantBias(bias_acc,bias_omega) );
|
|
|
|
disp('TODO: we have GPS so this initialization is not right')
|
|
% Prior on initial pose
|
|
factors.add(PriorFactorPose3(symbol('x',0), ...
|
|
currentPoseGlobal, noiseModel.Isotropic.Sigma(6, sigma_init_x)));
|
|
% Prior on initial velocity
|
|
factors.add(PriorFactorLieVector(symbol('v',0), ...
|
|
LieVector(currentVelocityGlobal), noiseModel.Isotropic.Sigma(3, sigma_init_v)));
|
|
% Prior on initial bias
|
|
factors.add(PriorFactorConstantBias(symbol('b',0), ...
|
|
imuBias.ConstantBias(bias_acc,bias_omega), noiseModel.Isotropic.Sigma(6, sigma_init_b)));
|
|
|
|
%% Main loop:
|
|
% (1) we read the measurements
|
|
% (2) we create the corresponding factors in the graph
|
|
% (3) we solve the graph to obtain and optimal estimate of robot trajectory
|
|
|
|
% lastTime = 0; TODO: delete?
|
|
% lastIndex = 0; TODO: delete?
|
|
currentSummarizedMeasurement = [];
|
|
|
|
% Measurement types:
|
|
% 1: VO
|
|
% 2: GPS
|
|
% 3: IMU
|
|
times = sortrows( [ ...
|
|
[VO_data.Time]' 1*ones(length([VO_data.Time]), 1); ...
|
|
%[GPS_data.Time]' 2*ones(length([GPS_data.Time]), 1); ...
|
|
[IMU_data.Time]' 3*ones(length([IMU_data.Time]), 1); ...
|
|
], 1); % this are the time-stamps at which we want to initialize a new node in the graph
|
|
|
|
t_previous = 0;
|
|
poseIndex = 0;
|
|
for measurementIndex = 1:size(times,1)
|
|
% At each non=IMU measurement we initialize a new node in the graph
|
|
currentPoseKey = symbol('x',poseIndex);
|
|
currentVelKey = symbol('v',poseIndex);
|
|
currentBiasKey = symbol('b',poseIndex);
|
|
|
|
t = times(measurementIndex, 1);
|
|
type = times(measurementIndex, 2);
|
|
|
|
if type == 3
|
|
% Integrate IMU
|
|
|
|
if isempty(currentSummarizedMeasurement)
|
|
% Create initial empty summarized measurement
|
|
% we assume that each row of the IMU.txt file has the following structure:
|
|
% timestamp delta_t acc_x acc_y acc_z omega_x omega_y omega_z
|
|
currentBias = isam.calculateEstimate(currentBiasKey - 1);
|
|
currentSummarizedMeasurement = gtsam.ImuFactorPreintegratedMeasurements( ...
|
|
currentBias, IMU_metadata.AccelerometerSigma.^2 * eye(3), ...
|
|
IMU_metadata.GyroscopeSigma.^2 * eye(3), IMU_metadata.IntegrationSigma.^2 * eye(3));
|
|
end
|
|
|
|
% Accumulate preintegrated measurement
|
|
deltaT = IMU_data(index).dt;
|
|
accMeas = IMU_data(index).acc_omega(1:3);
|
|
omegaMeas = IMU_data(index).acc_omega(4:6);
|
|
currentSummarizedMeasurement.integrateMeasurement(accMeas, omegaMeas, deltaT);
|
|
|
|
else
|
|
% Create IMU factor
|
|
factors.add(ImuFactor( ...
|
|
currentPoseKey-1, currentVelKey-1, ...
|
|
currentPoseKey, currentVelKey, ...
|
|
currentBiasKey-1, currentSummarizedMeasurement, g, cor_v, ...
|
|
currentSummarizedMeasurement.PreintMeasCov));
|
|
|
|
% Reset summarized measurement
|
|
currentSummarizedMeasurement = [];
|
|
|
|
if type == 1
|
|
% Create VO factor
|
|
elseif type == 2
|
|
% Create GPS factor
|
|
end
|
|
|
|
poseIndex = poseIndex + 1;
|
|
end
|
|
|
|
|
|
% =======================================================================
|
|
|
|
|
|
%% add factor corresponding to GPS measurements (if available at the current time)
|
|
% % =======================================================================
|
|
% if isempty( find(GPS_data(:,1) == t ) ) == 0 % it is a GPS measurement
|
|
% if length( find(GPS_data(:,1)) ) > 1
|
|
% error('more GPS measurements at the same time stamp: it should be an error')
|
|
% end
|
|
%
|
|
% index = find(GPS_data(:,1) == t ); % the row of the IMU_data matrix that we have to integrate
|
|
% GPSmeas = GPS_data(index,2:4);
|
|
%
|
|
% noiseModelGPS = ???; % noiseModelGPS.Isotropic.Sigma(6, sigma_init_x))
|
|
%
|
|
% % add factor
|
|
% disp('TODO: is the GPS noise right?')
|
|
% factors.add(PriorFactor???(currentPoseKey, GPSmeas, noiseModelGPS) );
|
|
% end
|
|
% =======================================================================
|
|
|
|
|
|
%% add factor corresponding to VO measurements (if available at the current time)
|
|
% =======================================================================
|
|
if isempty( find([VO_data.Time] == t, 1) )== 0 % it is a GPS measurement
|
|
if length( find([VO_data.Time] == t) ) > 1
|
|
error('more VO measurements at the same time stamp: it should be an error')
|
|
end
|
|
|
|
index = find([VO_data.Time] == t, 1); % the row of the IMU_data matrix that we have to integrate
|
|
|
|
VOpose = VO_data(index).RelativePose;
|
|
noiseModelVO = noiseModel.Diagonal.Sigmas([ IMU_metadata.RotationSigma * [1;1;1]; IMU_metadata.TranslationSigma * [1;1;1] ]);
|
|
|
|
% add factor
|
|
disp('TODO: is the VO noise right?')
|
|
factors.add(BetweenFactorPose3(lastVOPoseKey, currentPoseKey, VOpose, noiseModelVO));
|
|
|
|
lastVOPoseKey = currentPoseKey;
|
|
end
|
|
% =======================================================================
|
|
|
|
disp('TODO: add values')
|
|
% values.insert(, initialPose);
|
|
% values.insert(symbol('v',lastIndex+1), initialVel);
|
|
|
|
%% Update solver
|
|
% =======================================================================
|
|
isam.update(factors, values);
|
|
factors = NonlinearFactorGraph;
|
|
values = Values;
|
|
|
|
isam.calculateEstimate(currentPoseKey);
|
|
% M = isam.marginalCovariance(key_pose);
|
|
% =======================================================================
|
|
|
|
previousPoseKey = currentPoseKey;
|
|
previousVelKey = currentVelKey;
|
|
t_previous = t;
|
|
end
|
|
|
|
disp('TODO: display results')
|
|
% figure(1)
|
|
% hold on;
|
|
% plot(positions(1,:), positions(2,:), '-b');
|
|
% plot3DTrajectory(isam.calculateEstimate, 'g-');
|
|
% axis equal;
|
|
% legend('true trajectory', 'traj integrated in body', 'traj integrated in nav')
|