141 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			141 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C++
		
	
	
| /*
 | ||
|  * Lie.h
 | ||
|  *
 | ||
|  *  Created on: Jan 5, 2010
 | ||
|  *      Author: Richard Roberts
 | ||
|  */
 | ||
| 
 | ||
| #pragma once
 | ||
| 
 | ||
| #include <string>
 | ||
| #include "Matrix.h"
 | ||
| 
 | ||
| namespace gtsam {
 | ||
| 
 | ||
|   template<class T>
 | ||
|   T expmap(const Vector& v);  /* Exponential map about identity */
 | ||
| 
 | ||
|   // Syntactic sugar
 | ||
|   template<class T>
 | ||
|   inline T operator*(const T& l1, const T& l0) { return compose(l1, l0); }
 | ||
| 
 | ||
| 
 | ||
|   // The following functions may be overridden in your own class file
 | ||
|   // with more efficient versions if possible.
 | ||
| 
 | ||
|   // Compute l1 s.t. l2=l1*l0
 | ||
|   template<class T>
 | ||
|   inline T between(const T& l1, const T& l2) { return inverse(l1)*l2; }
 | ||
| 
 | ||
|   // Log map centered at l0, s.t. exp(l0,log(l0,lp)) = lp
 | ||
|   template<class T>
 | ||
|   inline Vector logmap(const T& l0, const T& lp) { return logmap(between(l0,lp)); }
 | ||
| 
 | ||
|   /* Exponential map centered at l0, s.t. exp(t,d) = t*exp(d) */
 | ||
|   template<class T>
 | ||
|   inline T expmap(const T& t, const Vector& d) { return t * expmap<T>(d); }
 | ||
| 
 | ||
|   /**
 | ||
|    * Base class for Lie group type
 | ||
|    */
 | ||
|   template <class T>
 | ||
|   class Lie {
 | ||
|   public:
 | ||
| 
 | ||
|     /**
 | ||
|      * Returns dimensionality of the tangent space
 | ||
|      */
 | ||
|     size_t dim() const;
 | ||
| 
 | ||
|     /**
 | ||
|      * Returns Exponential mapy
 | ||
|      */
 | ||
|     T expmap(const Vector& v) const;
 | ||
| 
 | ||
|     /**
 | ||
|      * Returns Log map
 | ||
|      */
 | ||
|     Vector logmap(const T& lp) const;
 | ||
| 
 | ||
|   };
 | ||
|   
 | ||
|   /** Call print on the object */
 | ||
|   template<class T>
 | ||
|   inline void print_(const T& object, const std::string& s = "") {
 | ||
|     object.print(s);
 | ||
|   }
 | ||
| 
 | ||
|   /** Call equal on the object */
 | ||
|   template<class T>
 | ||
|   inline bool equal(const T& obj1, const T& obj2, double tol) {
 | ||
|     return obj1.equals(obj2, tol);
 | ||
|   }
 | ||
| 
 | ||
|   /** Call equal on the object without tolerance (use default tolerance) */
 | ||
|   template<class T>
 | ||
|   inline bool equal(const T& obj1, const T& obj2) {
 | ||
|     return obj1.equals(obj2);
 | ||
|   }
 | ||
| 
 | ||
|   // The rest of the file makes double and Vector behave as a Lie type (with + as compose)
 | ||
| 
 | ||
|   // double,+ group operations
 | ||
|   inline double compose(double p1,double p2) { return p1+p2;}
 | ||
|   inline double inverse(double p) { return -p;}
 | ||
|   inline double between(double p1,double p2) { return p2-p1;}
 | ||
| 
 | ||
|   // double,+ is a trivial Lie group
 | ||
|   template<> inline double expmap(const Vector& d) { return d(0);}
 | ||
|   template<> inline double expmap(const double& p,const Vector& d) { return p+d(0);}
 | ||
|   inline Vector logmap(const double& p) { return repeat(1,p);}
 | ||
|   inline Vector logmap(const double& p1,const double& p2) { return Vector_(1,p2-p1);}
 | ||
| 
 | ||
|   // Global functions needed for double
 | ||
|   inline size_t dim(const double& v) { return 1; }
 | ||
| 
 | ||
|   // Vector group operations
 | ||
|   inline Vector compose(const Vector& p1,const Vector& p2) { return p1+p2;}
 | ||
|   inline Vector inverse(const Vector& p) { return -p;}
 | ||
|   inline Vector between(const Vector& p1,const Vector& p2) { return p2-p1;}
 | ||
| 
 | ||
|   // Vector is a trivial Lie group
 | ||
|   template<> inline Vector expmap(const Vector& d) { return d;}
 | ||
|   template<> inline Vector expmap(const Vector& p,const Vector& d) { return p+d;}
 | ||
|   inline Vector logmap(const Vector& p) { return p;}
 | ||
|   inline Vector logmap(const Vector& p1,const Vector& p2) { return p2-p1;}
 | ||
| 
 | ||
|   /**
 | ||
|    *  Three term approximation of the Baker<65>Campbell<6C>Hausdorff formula
 | ||
|    *  In non-commutative Lie groups, when composing exp(Z) = exp(X)exp(Y)
 | ||
|    *  it is not true that Z = X+Y. Instead, Z can be calculated using the BCH
 | ||
|    *  formula: Z = X + Y + [X,Y]/2 + [X-Y,[X,Y]]/12 - [Y,[X,[X,Y]]]/24
 | ||
|    *  http://en.wikipedia.org/wiki/Baker<65>Campbell<6C>Hausdorff_formula
 | ||
|    */
 | ||
|   template<class T>
 | ||
|   T BCH(const T& X, const T& Y) {
 | ||
|   	static const double _2 = 1. / 2., _12 = 1. / 12., _24 = 1. / 24.;
 | ||
|   	T X_Y = bracket(X, Y);
 | ||
|   	return X + Y + _2 * X_Y + _12 * bracket(X - Y, X_Y) - _24 * bracket(Y,
 | ||
|   			bracket(X, X_Y));
 | ||
|   }
 | ||
| 
 | ||
|   /**
 | ||
|    * Declaration of wedge (see Murray94book) used to convert
 | ||
|    * from n exponential coordinates to n*n element of the Lie algebra
 | ||
|    */
 | ||
|   template <class T> Matrix wedge(const Vector& x);
 | ||
| 
 | ||
|   /**
 | ||
|    * Exponential map given exponential coordinates
 | ||
|    * class T needs a wedge<> function and a constructor from Matrix
 | ||
|    * @param x exponential coordinates, vector of size n
 | ||
|    * @ return a T
 | ||
|    */
 | ||
|   template <class T>
 | ||
|   T expm(const Vector& x, int K=7) {
 | ||
|   	Matrix xhat = wedge<T>(x);
 | ||
|     return expm(xhat,K);
 | ||
|   }
 | ||
| 
 | ||
| } // namespace gtsam
 |