69 lines
1.6 KiB
Matlab
69 lines
1.6 KiB
Matlab
%-----------------------------------------------------------------------
|
|
% equals
|
|
fg = createGaussianFactorGraph();
|
|
fg2 = createGaussianFactorGraph();
|
|
CHECK('equals',fg.equals(fg2,1e-9));
|
|
|
|
%-----------------------------------------------------------------------
|
|
% error
|
|
zero = createZeroDelta();
|
|
actual = fg.error(zero);
|
|
DOUBLES_EQUAL( 5.625, actual, 1e-9 );
|
|
|
|
%-----------------------------------------------------------------------
|
|
% eliminate_x1
|
|
fg = createGaussianFactorGraph();
|
|
actual = fg.eliminateOne('x1');
|
|
|
|
%-----------------------------------------------------------------------
|
|
% eliminate_x2
|
|
fg = createGaussianFactorGraph();
|
|
actual = fg.eliminateOne('x2');
|
|
|
|
%-----------------------------------------------------------------------
|
|
% eliminateAll
|
|
sigma1=[.1;.1];
|
|
I = eye(2);
|
|
R1 = I;
|
|
d1=[-.1;-.1];
|
|
cg1 = GaussianConditional('x1',d1, R1,sigma1);
|
|
|
|
sigma2=[0.149071; 0.149071];
|
|
R2 = I;
|
|
A1= -I;
|
|
d2=[0; .2];
|
|
cg2 = GaussianConditional('l1',d2, R2, 'x1', A1,sigma2);
|
|
|
|
sigma3=[0.0894427; 0.0894427];
|
|
R3 = I;
|
|
A21 = -0.2*I;
|
|
A22 = -0.8*I;
|
|
d3 =[.2; -.14];
|
|
cg3 = GaussianConditional('x2',d3, R3, 'l1', A21, 'x1', A22, sigma3);
|
|
|
|
expected = GaussianBayesNet;
|
|
expected.push_back(cg3);
|
|
expected.push_back(cg2);
|
|
expected.push_back(cg1);
|
|
|
|
% Check one ordering
|
|
fg1 = createGaussianFactorGraph();
|
|
ord1 = Ordering;
|
|
ord1.push_back('x2');
|
|
ord1.push_back('l1');
|
|
ord1.push_back('x1');
|
|
actual1 = fg1.eliminate_(ord1);
|
|
CHECK('eliminateAll', actual1.equals(expected,1e-5));
|
|
|
|
%-----------------------------------------------------------------------
|
|
% matrix
|
|
|
|
fg = createGaussianFactorGraph();
|
|
ord = Ordering;
|
|
ord.push_back('x1');
|
|
ord.push_back('x2');
|
|
ord.push_back('l1');
|
|
|
|
[H,z] = fg.matrix(ord);
|
|
|