488 lines
21 KiB
C++
488 lines
21 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file SmartProjectionPoseFactorRollingShutter.h
|
|
* @brief Smart projection factor on poses modeling rolling shutter effect with given readout time
|
|
* @author Luca Carlone
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam/slam/SmartProjectionFactor.h>
|
|
|
|
namespace gtsam {
|
|
/**
|
|
*
|
|
* @addtogroup SLAM
|
|
*
|
|
* If you are using the factor, please cite:
|
|
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert,
|
|
* Eliminating conditionally independent sets in factor graphs:
|
|
* a unifying perspective based on smart factors,
|
|
* Int. Conf. on Robotics and Automation (ICRA), 2014.
|
|
*/
|
|
|
|
/**
|
|
* This factor optimizes the pose of the body assuming a rolling shutter model of the camera with given readout time.
|
|
* This factor requires that values contain (for each pixel observation) consecutive camera poses
|
|
* from which the pixel observation pose can be interpolated.
|
|
* @addtogroup SLAM
|
|
*/
|
|
template<class CALIBRATION>
|
|
class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<
|
|
PinholePose<CALIBRATION> > {
|
|
|
|
protected:
|
|
/// shared pointer to calibration object (one for each observation)
|
|
std::vector<boost::shared_ptr<CALIBRATION> > K_all_;
|
|
|
|
/// The keys of the pose of the body (with respect to an external world frame): two consecutive poses for each observation
|
|
std::vector<std::pair<Key, Key>> world_P_body_key_pairs_;
|
|
|
|
/// interpolation factor (one for each observation) to interpolate between pair of consecutive poses
|
|
std::vector<double> gammas_;
|
|
|
|
/// Pose of the camera in the body frame
|
|
std::vector<Pose3> body_P_sensors_; ///< Pose of the camera in the body frame
|
|
|
|
public:
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
|
|
|
typedef PinholePose<CALIBRATION> Camera;
|
|
/// shorthand for base class type
|
|
typedef SmartProjectionFactor<Camera> Base;
|
|
|
|
/// shorthand for this class
|
|
typedef SmartProjectionPoseFactorRollingShutter This;
|
|
|
|
/// shorthand for a smart pointer to a factor
|
|
typedef boost::shared_ptr<This> shared_ptr;
|
|
|
|
static const int DimBlock = 12; ///< size of the variable stacking 2 poses from which the observation pose is interpolated
|
|
static const int DimPose = 6; ///< Pose3 dimension
|
|
static const int ZDim = 2; ///< Measurement dimension (Point2)
|
|
typedef Eigen::Matrix<double, ZDim, DimBlock> MatrixZD; // F blocks (derivatives wrt camera)
|
|
typedef std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> > FBlocks; // vector of F blocks
|
|
|
|
/**
|
|
* Constructor
|
|
* @param Isotropic measurement noise
|
|
* @param params internal parameters of the smart factors
|
|
*/
|
|
SmartProjectionPoseFactorRollingShutter(
|
|
const SharedNoiseModel& sharedNoiseModel,
|
|
const SmartProjectionParams& params = SmartProjectionParams())
|
|
: Base(sharedNoiseModel, params) {
|
|
}
|
|
|
|
/** Virtual destructor */
|
|
~SmartProjectionPoseFactorRollingShutter() override = default;
|
|
|
|
/**
|
|
* add a new measurement, with 2 pose keys, camera calibration, and observed pixel.
|
|
* @param measured is the 2-dimensional location of the projection of a
|
|
* single landmark in the a single view (the measurement), interpolated from the 2 poses
|
|
* @param world_P_body_key1 is the key corresponding to the first body poses (time <= time pixel is acquired)
|
|
* @param world_P_body_key2 is the key corresponding to the second body poses (time >= time pixel is acquired)
|
|
* @param gamma in [0,1] is the interpolation factor, such that if gamma = 0 the interpolated pose is the same as world_P_body_key
|
|
* @param K is the (fixed) camera intrinsic calibration
|
|
*/
|
|
void add(const Point2& measured, const Key& world_P_body_key1,
|
|
const Key& world_P_body_key2, const double& gamma,
|
|
const boost::shared_ptr<CALIBRATION>& K, const Pose3 body_P_sensor) {
|
|
// store measurements in base class (note: we only store the first key there)
|
|
Base::add(measured, world_P_body_key1);
|
|
// but we also store the extrinsic calibration keys in the same order
|
|
world_P_body_key_pairs_.push_back(
|
|
std::make_pair(world_P_body_key1, world_P_body_key2));
|
|
|
|
// pose keys are assumed to be unique, so we avoid duplicates here
|
|
if (std::find(this->keys_.begin(), this->keys_.end(), world_P_body_key1)
|
|
== this->keys_.end())
|
|
this->keys_.push_back(world_P_body_key1); // add only unique keys
|
|
if (std::find(this->keys_.begin(), this->keys_.end(), world_P_body_key2)
|
|
== this->keys_.end())
|
|
this->keys_.push_back(world_P_body_key2); // add only unique keys
|
|
|
|
// store fixed calibration
|
|
K_all_.push_back(K);
|
|
|
|
// store extrinsics of the camera
|
|
body_P_sensors_.push_back(body_P_sensor);
|
|
}
|
|
|
|
/**
|
|
* Variant of the previous one in which we include a set of measurements
|
|
* @param measurements vector of the 2m dimensional location of the projection
|
|
* of a single landmark in the m views (the measurements)
|
|
* @param world_P_body_key_pairs vector of (1 for each view) containing the pair of poses from which each view can be interpolated
|
|
* @param Ks vector of intrinsic calibration objects
|
|
*/
|
|
void add(const std::vector<Point2>& measurements,
|
|
const std::vector<std::pair<Key, Key>>& world_P_body_key_pairs,
|
|
const std::vector<double>& gammas,
|
|
const std::vector<boost::shared_ptr<CALIBRATION>>& Ks,
|
|
const std::vector<Pose3> body_P_sensors) {
|
|
assert(world_P_body_key_pairs.size() == measurements.size());
|
|
assert(world_P_body_key_pairs.size() == gammas.size());
|
|
assert(world_P_body_key_pairs.size() == Ks.size());
|
|
for (size_t i = 0; i < measurements.size(); i++) {
|
|
add(measurements[i], world_P_body_key_pairs[i].first,
|
|
world_P_body_key_pairs[i].second, gammas[i], Ks[i],
|
|
body_P_sensors[i]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Variant of the previous one in which we include a set of measurements with
|
|
* the same (intrinsic and extrinsic) calibration
|
|
* @param measurements vector of the 2m dimensional location of the projection
|
|
* of a single landmark in the m views (the measurements)
|
|
* @param world_P_body_key_pairs vector of (1 for each view) containing the pair of poses from which each view can be interpolated
|
|
* @param K the (known) camera calibration (same for all measurements)
|
|
*/
|
|
void add(const std::vector<Point2>& measurements,
|
|
const std::vector<std::pair<Key, Key>>& world_P_body_key_pairs,
|
|
const std::vector<double>& gammas,
|
|
const boost::shared_ptr<CALIBRATION>& K, const Pose3 body_P_sensor) {
|
|
assert(world_P_body_key_pairs.size() == measurements.size());
|
|
assert(world_P_body_key_pairs.size() == gammas.size());
|
|
for (size_t i = 0; i < measurements.size(); i++) {
|
|
add(measurements[i], world_P_body_key_pairs[i].first,
|
|
world_P_body_key_pairs[i].second, gammas[i], K, body_P_sensor);
|
|
}
|
|
}
|
|
|
|
/// return the calibration object
|
|
inline std::vector<boost::shared_ptr<CALIBRATION>> calibration() const {
|
|
return K_all_;
|
|
}
|
|
|
|
/// return (for each observation) the key of the pair of poses from which we interpolate
|
|
const std::vector<std::pair<Key, Key>> world_P_body_key_pairs() const {
|
|
return world_P_body_key_pairs_;
|
|
}
|
|
|
|
/// return the interpolation factors gammas
|
|
const std::vector<double> getGammas() const {
|
|
return gammas_;
|
|
}
|
|
|
|
/// return the extrinsic camera calibration body_P_sensors
|
|
const std::vector<Pose3> body_P_sensors() const {
|
|
return body_P_sensors_;
|
|
}
|
|
|
|
/**
|
|
* print
|
|
* @param s optional string naming the factor
|
|
* @param keyFormatter optional formatter useful for printing Symbols
|
|
*/
|
|
void print(const std::string& s = "", const KeyFormatter& keyFormatter =
|
|
DefaultKeyFormatter) const override {
|
|
std::cout << s << "SmartProjectionPoseFactorRollingShutter: \n ";
|
|
for (size_t i = 0; i < K_all_.size(); i++) {
|
|
std::cout << "-- Measurement nr " << i << std::endl;
|
|
std::cout << " pose1 key: "
|
|
<< keyFormatter(world_P_body_key_pairs_[i].first) << std::endl;
|
|
std::cout << " pose2 key: "
|
|
<< keyFormatter(world_P_body_key_pairs_[i].second) << std::endl;
|
|
std::cout << " gamma: " << gammas_[i] << std::endl;
|
|
body_P_sensors_[i].print("extrinsic calibration:\n");
|
|
K_all_[i]->print("intrinsic calibration = ");
|
|
}
|
|
Base::print("", keyFormatter);
|
|
}
|
|
|
|
/// equals
|
|
bool equals(const NonlinearFactor& p, double tol = 1e-9) const override {
|
|
const SmartProjectionPoseFactorRollingShutter<CALIBRATION>* e =
|
|
dynamic_cast<const SmartProjectionPoseFactorRollingShutter<CALIBRATION>*>(&p);
|
|
|
|
double keyPairsEqual = true;
|
|
if(this->world_P_body_key_pairs_.size() == e->world_P_body_key_pairs().size()){
|
|
for(size_t k=0; k< this->world_P_body_key_pairs_.size(); k++){
|
|
const Key key1own = world_P_body_key_pairs_[k].first;
|
|
const Key key1e = e->world_P_body_key_pairs()[k].first;
|
|
const Key key2own = world_P_body_key_pairs_[k].second;
|
|
const Key key2e = e->world_P_body_key_pairs()[k].second;
|
|
if ( !(key1own == key1e) || !(key2own == key2e) ){
|
|
keyPairsEqual = false; break;
|
|
}
|
|
}
|
|
}else{ keyPairsEqual = false; }
|
|
|
|
double extrinsicCalibrationEqual = true;
|
|
if(this->body_P_sensors_.size() == e->body_P_sensors().size()){
|
|
for(size_t i=0; i< this->body_P_sensors_.size(); i++){
|
|
if (!body_P_sensors_[i].equals(e->body_P_sensors()[i])){
|
|
extrinsicCalibrationEqual = false; break;
|
|
}
|
|
}
|
|
}else{ extrinsicCalibrationEqual = false; }
|
|
|
|
return e && Base::equals(p, tol) && K_all_ == e->calibration()
|
|
&& gammas_ == e->getGammas() && keyPairsEqual && extrinsicCalibrationEqual;
|
|
}
|
|
|
|
/**
|
|
* error calculates the error of the factor.
|
|
*/
|
|
double error(const Values& values) const override {
|
|
if (this->active(values)) {
|
|
return this->totalReprojectionError(cameras(values));
|
|
} else { // else of active flag
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Collect all cameras involved in this factor
|
|
* @param values Values structure which must contain camera poses
|
|
* corresponding to keys involved in this factor
|
|
* @return Cameras
|
|
*/
|
|
typename Base::Cameras cameras(const Values& values) const override {
|
|
assert(world_P_body_keys_.size() == K_all_.size());
|
|
assert(world_P_body_keys_.size() == body_P_cam_keys_.size());
|
|
typename Base::Cameras cameras;
|
|
for (size_t i = 0; i < world_P_body_key_pairs_.size(); i++) {
|
|
Pose3 w_P_body1 = values.at<Pose3>(world_P_body_key_pairs_[i].first);
|
|
Pose3 w_P_body2 = values.at<Pose3>(world_P_body_key_pairs_[i].second);
|
|
double interpolationFactor = gammas_[i];
|
|
// get interpolated pose:
|
|
Pose3 w_P_body = w_P_body1.interpolateRt(w_P_body2, interpolationFactor);
|
|
Pose3 body_P_cam = body_P_sensors_[i];
|
|
Pose3 w_P_cam = w_P_body.compose(body_P_cam);
|
|
cameras.emplace_back(w_P_cam, K_all_[i]);
|
|
}
|
|
return cameras;
|
|
}
|
|
|
|
/**
|
|
* Compute jacobian F, E and error vector at a given linearization point
|
|
* @param values Values structure which must contain camera poses
|
|
* corresponding to keys involved in this factor
|
|
* @return Return arguments are the camera jacobians Fs (including the jacobian with
|
|
* respect to both the body pose and extrinsic pose), the point Jacobian E,
|
|
* and the error vector b. Note that the jacobians are computed for a given point.
|
|
*/
|
|
void computeJacobiansWithTriangulatedPoint(FBlocks& Fs, Matrix& E, Vector& b,
|
|
const Values& values) const {
|
|
if (!this->result_) {
|
|
throw("computeJacobiansWithTriangulatedPoint");
|
|
} else { // valid result: compute jacobians
|
|
size_t numViews = this->measured_.size();
|
|
E = Matrix::Zero(2 * numViews, 3); // a Point2 for each view (point jacobian)
|
|
b = Vector::Zero(2 * numViews); // a Point2 for each view
|
|
Eigen::Matrix<double, ZDim, DimPose> dProject_dPoseCam;
|
|
Eigen::Matrix<double, DimPose, DimPose> dInterpPose_dPoseBody1,
|
|
dInterpPose_dPoseBody2, dPoseCam_dInterpPose;
|
|
Eigen::Matrix<double, ZDim, 3> Ei;
|
|
|
|
for (size_t i = 0; i < numViews; i++) { // for each camera/measurement
|
|
Pose3 w_P_body1 = values.at<Pose3>(world_P_body_key_pairs_[i].first);
|
|
Pose3 w_P_body2 = values.at<Pose3>(world_P_body_key_pairs_[i].second);
|
|
double interpolationFactor = gammas_[i];
|
|
// get interpolated pose:
|
|
std::cout << "TODO: need to add proper interpolation and Jacobians here" << std::endl;
|
|
Pose3 w_P_body = w_P_body1.interpolateRt(w_P_body2,
|
|
interpolationFactor); /*dInterpPose_dPoseBody1, dInterpPose_dPoseBody2 */
|
|
Pose3 body_P_cam = body_P_sensors_[i];
|
|
Pose3 w_P_cam = w_P_body.compose(body_P_cam, dPoseCam_dInterpPose);
|
|
PinholeCamera<CALIBRATION> camera(w_P_cam, K_all_[i]);
|
|
|
|
// get jacobians and error vector for current measurement
|
|
Point2 reprojectionError_i = Point2(
|
|
camera.project(*this->result_, dProject_dPoseCam, Ei)
|
|
- this->measured_.at(i));
|
|
Eigen::Matrix<double, ZDim, DimBlock> J; // 2 x 12
|
|
J.block<ZDim, 6>(0, 0) = dProject_dPoseCam * dPoseCam_dInterpPose
|
|
* dInterpPose_dPoseBody1; // (2x6) * (6x6) * (6x6)
|
|
J.block<ZDim, 6>(0, 6) = dProject_dPoseCam * dPoseCam_dInterpPose
|
|
* dInterpPose_dPoseBody2; // (2x6) * (6x6) * (6x6)
|
|
|
|
// fit into the output structures
|
|
Fs.push_back(J);
|
|
size_t row = 2 * i;
|
|
b.segment<ZDim>(row) = -reprojectionError_i;
|
|
E.block<3, 3>(row, 0) = Ei;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// linearize and return a Hessianfactor that is an approximation of error(p)
|
|
boost::shared_ptr<RegularHessianFactor<DimBlock> > createHessianFactor(
|
|
const Values& values, const double lambda = 0.0, bool diagonalDamping =
|
|
false) const {
|
|
|
|
// we may have multiple cameras sharing the same extrinsic cals, hence the number
|
|
// of keys may be smaller than 2 * nrMeasurements (which is the upper bound where we
|
|
// have a body key and an extrinsic calibration key for each measurement)
|
|
size_t nrUniqueKeys = this->keys_.size();
|
|
size_t nrNonuniqueKeys = 2*world_P_body_key_pairs_.size();
|
|
|
|
// Create structures for Hessian Factors
|
|
KeyVector js;
|
|
std::vector < Matrix > Gs(nrUniqueKeys * (nrUniqueKeys + 1) / 2);
|
|
std::vector<Vector> gs(nrUniqueKeys);
|
|
|
|
if (this->measured_.size() != cameras(values).size())
|
|
throw std::runtime_error("SmartProjectionPoseFactorRollingShutter: "
|
|
"measured_.size() inconsistent with input");
|
|
|
|
// // triangulate 3D point at given linearization point
|
|
// triangulateSafe(cameras(values));
|
|
//
|
|
// if (!this->result_) { // failed: return "empty/zero" Hessian
|
|
// for (Matrix& m : Gs)
|
|
// m = Matrix::Zero(DimPose, DimPose);
|
|
// for (Vector& v : gs)
|
|
// v = Vector::Zero(DimPose);
|
|
// return boost::make_shared < RegularHessianFactor<DimPose>
|
|
// > ( this->keys_, Gs, gs, 0.0);
|
|
// }
|
|
//
|
|
// // compute Jacobian given triangulated 3D Point
|
|
// FBlocks Fs;
|
|
// Matrix F, E;
|
|
// Vector b;
|
|
// computeJacobiansWithTriangulatedPoint(Fs, E, b, values);
|
|
//
|
|
// // Whiten using noise model
|
|
// this->noiseModel_->WhitenSystem(E, b);
|
|
// for (size_t i = 0; i < Fs.size(); i++)
|
|
// Fs[i] = this->noiseModel_->Whiten(Fs[i]);
|
|
//
|
|
// // build augmented Hessian (with last row/column being the information vector)
|
|
// Matrix3 P;
|
|
// This::Cameras::ComputePointCovariance<3>(P, E, lambda, diagonalDamping);
|
|
//
|
|
// // marginalize point: note - we reuse the standard SchurComplement function
|
|
// SymmetricBlockMatrix augmentedHessian = This::Cameras::SchurComplement<2,DimBlock>(Fs, E, P, b);
|
|
|
|
// // now pack into an Hessian factor
|
|
// std::vector<DenseIndex> dims(nrUniqueKeys + 1); // this also includes the b term
|
|
// std::fill(dims.begin(), dims.end() - 1, 6);
|
|
// dims.back() = 1;
|
|
// SymmetricBlockMatrix augmentedHessianUniqueKeys;
|
|
//
|
|
// // here we have to deal with the fact that some cameras may share the same extrinsic key
|
|
// if (nrUniqueKeys == nrNonuniqueKeys) { // if there is 1 calibration key per camera
|
|
// augmentedHessianUniqueKeys = SymmetricBlockMatrix(
|
|
// dims, Matrix(augmentedHessian.selfadjointView()));
|
|
// } else { // if multiple cameras share a calibration we have to rearrange
|
|
// // the results of the Schur complement matrix
|
|
// std::vector<DenseIndex> nonuniqueDims(nrNonuniqueKeys + 1); // this also includes the b term
|
|
// std::fill(nonuniqueDims.begin(), nonuniqueDims.end() - 1, 6);
|
|
// nonuniqueDims.back() = 1;
|
|
// augmentedHessian = SymmetricBlockMatrix(
|
|
// nonuniqueDims, Matrix(augmentedHessian.selfadjointView()));
|
|
//
|
|
// // these are the keys that correspond to the blocks in augmentedHessian (output of SchurComplement)
|
|
// KeyVector nonuniqueKeys;
|
|
// for (size_t i = 0; i < world_P_body_key_pairs_.size(); i++) {
|
|
// nonuniqueKeys.push_back(world_P_body_key_pairs_.at(i));
|
|
// nonuniqueKeys.push_back(body_P_cam_ this->keys_.at(i));
|
|
// }
|
|
//
|
|
// // get map from key to location in the new augmented Hessian matrix (the one including only unique keys)
|
|
// std::map<Key, size_t> keyToSlotMap;
|
|
// for (size_t k = 0; k < nrUniqueKeys; k++) {
|
|
// keyToSlotMap[ this->keys_[k]] = k;
|
|
// }
|
|
//
|
|
// // initialize matrix to zero
|
|
// augmentedHessianUniqueKeys = SymmetricBlockMatrix(
|
|
// dims, Matrix::Zero(6 * nrUniqueKeys + 1, 6 * nrUniqueKeys + 1));
|
|
//
|
|
// // add contributions for each key: note this loops over the hessian with nonUnique keys (augmentedHessian)
|
|
// // and populates an Hessian that only includes the unique keys (that is what we want to return)
|
|
// for (size_t i = 0; i < nrNonuniqueKeys; i++) { // rows
|
|
// Key key_i = nonuniqueKeys.at(i);
|
|
//
|
|
// // update information vector
|
|
// augmentedHessianUniqueKeys.updateOffDiagonalBlock(
|
|
// keyToSlotMap[key_i], nrUniqueKeys,
|
|
// augmentedHessian.aboveDiagonalBlock(i, nrNonuniqueKeys));
|
|
//
|
|
// // update blocks
|
|
// for (size_t j = i; j < nrNonuniqueKeys; j++) { // cols
|
|
// Key key_j = nonuniqueKeys.at(j);
|
|
// if (i == j) {
|
|
// augmentedHessianUniqueKeys.updateDiagonalBlock(
|
|
// keyToSlotMap[key_i], augmentedHessian.diagonalBlock(i));
|
|
// } else { // (i < j)
|
|
// if (keyToSlotMap[key_i] != keyToSlotMap[key_j]) {
|
|
// augmentedHessianUniqueKeys.updateOffDiagonalBlock(
|
|
// keyToSlotMap[key_i], keyToSlotMap[key_j],
|
|
// augmentedHessian.aboveDiagonalBlock(i, j));
|
|
// } else {
|
|
// augmentedHessianUniqueKeys.updateDiagonalBlock(
|
|
// keyToSlotMap[key_i],
|
|
// augmentedHessian.aboveDiagonalBlock(i, j)
|
|
// + augmentedHessian.aboveDiagonalBlock(i, j).transpose());
|
|
// }
|
|
// }
|
|
// }
|
|
// }
|
|
// // update bottom right element of the matrix
|
|
// augmentedHessianUniqueKeys.updateDiagonalBlock(
|
|
// nrUniqueKeys, augmentedHessian.diagonalBlock(nrNonuniqueKeys));
|
|
// }
|
|
// return boost::make_shared < RegularHessianFactor<DimPose>
|
|
// > ( this->keys_, augmentedHessianUniqueKeys);
|
|
}
|
|
|
|
/**
|
|
* Linearize to Gaussian Factor (possibly adding a damping factor Lambda for LM)
|
|
* @param values Values structure which must contain camera poses and extrinsic pose for this factor
|
|
* @return a Gaussian factor
|
|
*/
|
|
boost::shared_ptr<GaussianFactor> linearizeDamped(
|
|
const Values& values, const double lambda = 0.0) const {
|
|
// depending on flag set on construction we may linearize to different linear factors
|
|
switch (this->params_.linearizationMode) {
|
|
case HESSIAN:
|
|
return createHessianFactor(values, lambda);
|
|
default:
|
|
throw std::runtime_error(
|
|
"SmartProjectionPoseFactorRollingShutter: unknown linearization mode");
|
|
}
|
|
}
|
|
|
|
/// linearize
|
|
boost::shared_ptr<GaussianFactor> linearize(const Values& values) const
|
|
override {
|
|
return linearizeDamped(values);
|
|
}
|
|
|
|
private:
|
|
/// Serialization function
|
|
friend class boost::serialization::access;
|
|
template<class ARCHIVE>
|
|
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
|
|
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
|
ar & BOOST_SERIALIZATION_NVP(K_all_);
|
|
}
|
|
|
|
};
|
|
// end of class declaration
|
|
|
|
/// traits
|
|
template<class CALIBRATION>
|
|
struct traits<SmartProjectionPoseFactorRollingShutter<CALIBRATION> > :
|
|
public Testable<SmartProjectionPoseFactorRollingShutter<CALIBRATION> > {
|
|
};
|
|
|
|
} // namespace gtsam
|