gtsam/gtsam/linear/GaussianConditional.h

153 lines
6.2 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file GaussianConditional.h
* @brief Conditional Gaussian Base class
* @author Christian Potthast
*/
// \callgraph
#pragma once
#include <boost/utility.hpp>
#include <gtsam/global_includes.h>
#include <gtsam/linear/JacobianFactor.h>
#include <gtsam/inference/Conditional.h>
#include <gtsam/linear/VectorValues.h>
namespace gtsam {
/**
* A conditional Gaussian functions as the node in a Bayes network
* It has a set of parents y,z, etc. and implements a probability density on x.
* The negative log-probability is given by \f$ \frac{1}{2} |Rx - (d - Sy - Tz - ...)|^2 \f$
*/
class GTSAM_EXPORT GaussianConditional :
public JacobianFactor,
public Conditional<JacobianFactor, GaussianConditional>
{
public:
typedef GaussianConditional This; ///< Typedef to this class
typedef boost::shared_ptr<This> shared_ptr; ///< shared_ptr to this class
typedef JacobianFactor BaseFactor; ///< Typedef to our factor base class
typedef Conditional<BaseFactor, This> BaseConditional; ///< Typedef to our conditional base class
/** default constructor needed for serialization */
GaussianConditional() {}
/** constructor with no parents |Rx-d| */
GaussianConditional(Key key, const Vector& d, const Matrix& R,
const SharedDiagonal& sigmas = SharedDiagonal());
/** constructor with only one parent |Rx+Sy-d| */
GaussianConditional(Key key, const Vector& d, const Matrix& R,
Key name1, const Matrix& S, const SharedDiagonal& sigmas = SharedDiagonal());
/** constructor with two parents |Rx+Sy+Tz-d| */
GaussianConditional(Key key, const Vector& d, const Matrix& R,
Key name1, const Matrix& S, Key name2, const Matrix& T,
const SharedDiagonal& sigmas = SharedDiagonal());
/** Constructor with arbitrary number of frontals and parents.
* @tparam TERMS A container whose value type is std::pair<Key, Matrix>, specifying the
* collection of keys and matrices making up the conditional. */
template<typename TERMS>
GaussianConditional(const TERMS& terms,
size_t nrFrontals, const Vector& d,
const SharedDiagonal& sigmas = SharedDiagonal());
/** Constructor with arbitrary number keys, and where the augmented matrix is given all together
* instead of in block terms. Note that only the active view of the provided augmented matrix
* is used, and that the matrix data is copied into a newly-allocated matrix in the constructed
* factor. */
template<typename KEYS>
GaussianConditional(
const KEYS& keys, size_t nrFrontals, const VerticalBlockMatrix& augmentedMatrix,
const SharedDiagonal& sigmas = SharedDiagonal());
/** Combine several GaussianConditional into a single dense GC. The conditionals enumerated by
* \c first and \c last must be in increasing order, meaning that the parents of any
* conditional may not include a conditional coming before it.
* @param firstConditional Iterator to the first conditional to combine, must dereference to a
* shared_ptr<GaussianConditional>.
* @param lastConditional Iterator to after the last conditional to combine, must dereference
* to a shared_ptr<GaussianConditional>. */
template<typename ITERATOR>
static shared_ptr Combine(ITERATOR firstConditional, ITERATOR lastConditional);
/** print */
void print(const std::string& = "GaussianConditional",
const KeyFormatter& formatter = DefaultKeyFormatter) const;
/** equals function */
bool equals(const GaussianFactor&cg, double tol = 1e-9) const;
/** Return a view of the upper-triangular R block of the conditional */
constABlock R() const { return Ab_.range(0, nrFrontals()); }
/** Get a view of the parent blocks. */
constABlock S() const { return Ab_.range(nrFrontals(), size()); }
/** Get a view of the S matrix for the variable pointed to by the given key iterator */
constABlock S(const_iterator it) const { return BaseFactor::getA(it); }
/** Get a view of the r.h.s. vector d */
const constBVector d() const { return BaseFactor::getb(); }
/**
* Solves a conditional Gaussian and writes the solution into the entries of
* \c x for each frontal variable of the conditional. The parents are
* assumed to have already been solved in and their values are read from \c x.
* This function works for multiple frontal variables.
*
* Given the Gaussian conditional with log likelihood \f$ |R x_f - (d - S x_s)|^2 \f$,
* where \f$ f \f$ are the frontal variables and \f$ s \f$ are the separator
* variables of this conditional, this solve function computes
* \f$ x_f = R^{-1} (d - S x_s) \f$ using back-substitution.
*
* @param parents VectorValues containing solved parents \f$ x_s \f$.
*/
VectorValues solve(const VectorValues& parents) const;
VectorValues solveOtherRHS(const VectorValues& parents, const VectorValues& rhs) const;
/** Performs transpose backsubstition in place on values */
void solveTransposeInPlace(VectorValues& gy) const;
/** Scale the values in \c gy according to the sigmas for the frontal variables in this
* conditional. */
void scaleFrontalsBySigma(VectorValues& gy) const;
// FIXME: deprecated flag doesn't appear to exist?
// __declspec(deprecated) void scaleFrontalsBySigma(VectorValues& gy) const;
private:
/** Serialization function */
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int /*version*/) {
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(BaseFactor);
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(BaseConditional);
}
}; // GaussianConditional
/// traits
template<>
struct traits<GaussianConditional> : public Testable<GaussianConditional> {};
} // \ namespace gtsam
#include <gtsam/linear/GaussianConditional-inl.h>