190 lines
5.5 KiB
Python
190 lines
5.5 KiB
Python
"""Unit tests for track generation using a Disjoint Set Forest data structure.
|
|
|
|
Authors: John Lambert
|
|
"""
|
|
|
|
import unittest
|
|
from typing import Dict, Tuple
|
|
|
|
import numpy as np
|
|
from gtsam.gtsfm import Keypoints
|
|
from gtsam.utils.test_case import GtsamTestCase
|
|
|
|
import gtsam
|
|
from gtsam import (IndexPair, KeypointsVector, MatchIndicesMap, Point2,
|
|
SfmMeasurementVector, SfmTrack2d)
|
|
|
|
|
|
class TestDsfTrackGenerator(GtsamTestCase):
|
|
"""Tests for DsfTrackGenerator."""
|
|
|
|
def test_generate_tracks_from_pairwise_matches_nontransitive(
|
|
self,
|
|
) -> None:
|
|
"""Tests DSF for non-transitive matches.
|
|
|
|
Test will result in no tracks since nontransitive tracks are naively
|
|
discarded by DSF.
|
|
"""
|
|
keypoints = get_dummy_keypoints_list()
|
|
nontransitive_matches = get_nontransitive_matches()
|
|
|
|
# For each image pair (i1,i2), we provide a (K,2) matrix
|
|
# of corresponding keypoint indices (k1,k2).
|
|
matches = MatchIndicesMap()
|
|
for (i1, i2), correspondences in nontransitive_matches.items():
|
|
matches[IndexPair(i1, i2)] = correspondences
|
|
|
|
tracks = gtsam.gtsfm.tracksFromPairwiseMatches(
|
|
matches,
|
|
keypoints,
|
|
verbose=True,
|
|
)
|
|
self.assertEqual(len(tracks), 0, "Tracks not filtered correctly")
|
|
|
|
def test_track_generation(self) -> None:
|
|
"""Ensures that DSF generates three tracks from measurements
|
|
in 3 images (H=200,W=400)."""
|
|
kps_i0 = Keypoints(np.array([[10.0, 20], [30, 40]]))
|
|
kps_i1 = Keypoints(np.array([[50.0, 60], [70, 80], [90, 100]]))
|
|
kps_i2 = Keypoints(np.array([[110.0, 120], [130, 140]]))
|
|
|
|
keypoints = KeypointsVector()
|
|
keypoints.append(kps_i0)
|
|
keypoints.append(kps_i1)
|
|
keypoints.append(kps_i2)
|
|
|
|
# For each image pair (i1,i2), we provide a (K,2) matrix
|
|
# of corresponding image indices (k1,k2).
|
|
matches = MatchIndicesMap()
|
|
matches[IndexPair(0, 1)] = np.array([[0, 0], [1, 1]])
|
|
matches[IndexPair(1, 2)] = np.array([[2, 0], [1, 1]])
|
|
|
|
tracks = gtsam.gtsfm.tracksFromPairwiseMatches(
|
|
matches,
|
|
keypoints,
|
|
verbose=False,
|
|
)
|
|
assert len(tracks) == 3
|
|
|
|
# Verify track 0.
|
|
track0 = tracks[0]
|
|
assert track0.numberMeasurements() == 2
|
|
np.testing.assert_allclose(track0.measurements[0][1], Point2(10, 20))
|
|
np.testing.assert_allclose(track0.measurements[1][1], Point2(50, 60))
|
|
assert track0.measurements[0][0] == 0
|
|
assert track0.measurements[1][0] == 1
|
|
np.testing.assert_allclose(
|
|
track0.measurementMatrix(),
|
|
[
|
|
[10, 20],
|
|
[50, 60],
|
|
],
|
|
)
|
|
np.testing.assert_allclose(track0.indexVector(), [0, 1])
|
|
|
|
# Verify track 1.
|
|
track1 = tracks[1]
|
|
np.testing.assert_allclose(
|
|
track1.measurementMatrix(),
|
|
[
|
|
[30, 40],
|
|
[70, 80],
|
|
[130, 140],
|
|
],
|
|
)
|
|
np.testing.assert_allclose(track1.indexVector(), [0, 1, 2])
|
|
|
|
# Verify track 2.
|
|
track2 = tracks[2]
|
|
np.testing.assert_allclose(
|
|
track2.measurementMatrix(),
|
|
[
|
|
[90, 100],
|
|
[110, 120],
|
|
],
|
|
)
|
|
np.testing.assert_allclose(track2.indexVector(), [1, 2])
|
|
|
|
|
|
class TestSfmTrack2d(GtsamTestCase):
|
|
"""Tests for SfmTrack2d."""
|
|
|
|
def test_sfm_track_2d_constructor(self) -> None:
|
|
"""Test construction of 2D SfM track."""
|
|
measurements = SfmMeasurementVector()
|
|
measurements.append((0, Point2(10, 20)))
|
|
track = SfmTrack2d(measurements=measurements)
|
|
track.measurement(0)
|
|
assert track.numberMeasurements() == 1
|
|
|
|
|
|
def get_dummy_keypoints_list() -> KeypointsVector:
|
|
"""Generate a list of dummy keypoints for testing."""
|
|
img1_kp_coords = np.array([[1, 1], [2, 2], [3, 3.]])
|
|
img2_kp_coords = np.array(
|
|
[
|
|
[1, 1.],
|
|
[2, 2],
|
|
[3, 3],
|
|
[4, 4],
|
|
[5, 5],
|
|
[6, 6],
|
|
[7, 7],
|
|
[8, 8],
|
|
]
|
|
)
|
|
img3_kp_coords = np.array(
|
|
[
|
|
[1, 1.],
|
|
[2, 2],
|
|
[3, 3],
|
|
[4, 4],
|
|
[5, 5],
|
|
[6, 6],
|
|
[7, 7],
|
|
[8, 8],
|
|
[9, 9],
|
|
[10, 10],
|
|
]
|
|
)
|
|
img4_kp_coords = np.array(
|
|
[
|
|
[1, 1.],
|
|
[2, 2],
|
|
[3, 3],
|
|
[4, 4],
|
|
[5, 5],
|
|
]
|
|
)
|
|
keypoints = KeypointsVector()
|
|
keypoints.append(Keypoints(coordinates=img1_kp_coords))
|
|
keypoints.append(Keypoints(coordinates=img2_kp_coords))
|
|
keypoints.append(Keypoints(coordinates=img3_kp_coords))
|
|
keypoints.append(Keypoints(coordinates=img4_kp_coords))
|
|
return keypoints
|
|
|
|
|
|
def get_nontransitive_matches() -> Dict[Tuple[int, int], np.ndarray]:
|
|
"""Set up correspondences for each (i1,i2) pair that violates transitivity.
|
|
|
|
(i=0, k=0) (i=0, k=1)
|
|
| \\ |
|
|
| \\ |
|
|
(i=1, k=2)--(i=2,k=3)--(i=3, k=4)
|
|
|
|
Transitivity is violated due to the match between frames 0 and 3.
|
|
"""
|
|
nontransitive_matches = {
|
|
(0, 1): np.array([[0, 2]]),
|
|
(1, 2): np.array([[2, 3]]),
|
|
(0, 2): np.array([[0, 3]]),
|
|
(0, 3): np.array([[1, 4]]),
|
|
(2, 3): np.array([[3, 4]]),
|
|
}
|
|
return nontransitive_matches
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|