180 lines
5.8 KiB
C++
180 lines
5.8 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* testDiscreteBayesNet.cpp
|
|
*
|
|
* @date Feb 27, 2011
|
|
* @author Frank Dellaert
|
|
*/
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
#include <gtsam/base/Testable.h>
|
|
#include <gtsam/base/Vector.h>
|
|
#include <gtsam/base/debug.h>
|
|
#include <gtsam/discrete/DiscreteBayesNet.h>
|
|
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
|
#include <gtsam/discrete/DiscreteMarginals.h>
|
|
#include <gtsam/inference/Symbol.h>
|
|
|
|
#include <iostream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "AsiaExample.h"
|
|
|
|
using namespace gtsam;
|
|
|
|
/* ************************************************************************* */
|
|
TEST(DiscreteBayesNet, bayesNet) {
|
|
using ADT = AlgebraicDecisionTree<Key>;
|
|
DiscreteBayesNet bayesNet;
|
|
DiscreteKey Parent(0, 2), Child(1, 2);
|
|
|
|
auto prior = std::make_shared<DiscreteConditional>(Parent % "6/4");
|
|
CHECK(assert_equal(ADT({Parent}, "0.6 0.4"), (ADT)*prior));
|
|
bayesNet.push_back(prior);
|
|
|
|
auto conditional =
|
|
std::make_shared<DiscreteConditional>(Child | Parent = "7/3 8/2");
|
|
EXPECT_LONGS_EQUAL(1, *(conditional->beginFrontals()));
|
|
ADT expected(Child & Parent, "0.7 0.8 0.3 0.2");
|
|
CHECK(assert_equal(expected, (ADT)*conditional));
|
|
bayesNet.push_back(conditional);
|
|
|
|
DiscreteFactorGraph fg(bayesNet);
|
|
LONGS_EQUAL(2, fg.back()->size());
|
|
|
|
// Check the marginals
|
|
const double expectedMarginal[2]{0.4, 0.6 * 0.3 + 0.4 * 0.2};
|
|
DiscreteMarginals marginals(fg);
|
|
for (size_t j = 0; j < 2; j++) {
|
|
Vector FT = marginals.marginalProbabilities(DiscreteKey(j, 2));
|
|
EXPECT_DOUBLES_EQUAL(expectedMarginal[j], FT[1], 1e-3);
|
|
EXPECT_DOUBLES_EQUAL(FT[0], 1.0 - FT[1], 1e-9);
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(DiscreteBayesNet, Asia) {
|
|
using namespace asia_example;
|
|
const DiscreteBayesNet asia = createAsiaExample();
|
|
|
|
// Convert to factor graph
|
|
DiscreteFactorGraph fg(asia);
|
|
LONGS_EQUAL(1, fg.back()->size());
|
|
|
|
// Check the marginals we know (of the parent-less nodes)
|
|
DiscreteMarginals marginals(fg);
|
|
Vector2 va(0.99, 0.01), vs(0.5, 0.5);
|
|
EXPECT(assert_equal(va, marginals.marginalProbabilities(Asia)));
|
|
EXPECT(assert_equal(vs, marginals.marginalProbabilities(Smoking)));
|
|
|
|
// Create solver and eliminate
|
|
const Ordering ordering{A, D, T, X, S, E, L, B};
|
|
DiscreteBayesNet::shared_ptr chordal = fg.eliminateSequential(ordering);
|
|
DiscreteConditional expected2(Bronchitis % "11/9");
|
|
EXPECT(assert_equal(expected2, *chordal->back()));
|
|
|
|
// Check evaluate and logProbability
|
|
auto result = fg.optimize();
|
|
EXPECT_DOUBLES_EQUAL(asia.logProbability(result),
|
|
std::log(asia.evaluate(result)), 1e-9);
|
|
|
|
// add evidence, we were in Asia and we have dyspnea
|
|
fg.add(Asia, "0 1");
|
|
fg.add(Dyspnea, "0 1");
|
|
|
|
// solve again, now with evidence
|
|
DiscreteBayesNet::shared_ptr chordal2 = fg.eliminateSequential(ordering);
|
|
EXPECT(assert_equal(expected2, *chordal->back()));
|
|
|
|
// now sample from it
|
|
DiscreteValues expectedSample{{Asia.first, 1}, {Dyspnea.first, 1},
|
|
{XRay.first, 0}, {Tuberculosis.first, 0},
|
|
{Smoking.first, 1}, {Either.first, 0},
|
|
{LungCancer.first, 0}, {Bronchitis.first, 1}};
|
|
SETDEBUG("DiscreteConditional::sample", false);
|
|
auto actualSample = chordal2->sample();
|
|
EXPECT(assert_equal(expectedSample, actualSample));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(DiscreteBayesNet, Sugar) {
|
|
DiscreteKey T(0, 2), L(1, 2), E(2, 2), C(8, 3), S(7, 2);
|
|
|
|
DiscreteBayesNet bn;
|
|
|
|
// try logic
|
|
bn.add((E | T, L) = "OR");
|
|
bn.add((E | T, L) = "AND");
|
|
|
|
// try multivalued
|
|
bn.add(C % "1/1/2");
|
|
bn.add(C | S = "1/1/2 5/2/3");
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(DiscreteBayesNet, Dot) {
|
|
using namespace asia_example;
|
|
const DiscreteBayesNet fragment = createFragment();
|
|
|
|
std::string expected =
|
|
"digraph {\n"
|
|
" size=\"5,5\";\n"
|
|
"\n"
|
|
" var4683743612465315848[label=\"A8\"];\n"
|
|
" var4971973988617027587[label=\"E3\"];\n"
|
|
" var5476377146882523141[label=\"L5\"];\n"
|
|
" var5980780305148018695[label=\"S7\"];\n"
|
|
" var6052837899185946630[label=\"T6\"];\n"
|
|
"\n"
|
|
" var4683743612465315848->var6052837899185946630\n"
|
|
" var5980780305148018695->var5476377146882523141\n"
|
|
" var6052837899185946630->var4971973988617027587\n"
|
|
" var5476377146882523141->var4971973988617027587\n"
|
|
"}";
|
|
std::string actual = fragment.dot();
|
|
EXPECT(actual.compare(expected) == 0);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Check markdown representation looks as expected.
|
|
TEST(DiscreteBayesNet, markdown) {
|
|
using namespace asia_example;
|
|
DiscreteBayesNet priors = createPriors();
|
|
|
|
std::string expected =
|
|
"`DiscreteBayesNet` of size 2\n"
|
|
"\n"
|
|
" *P(Smoking):*\n\n"
|
|
"|Smoking|value|\n"
|
|
"|:-:|:-:|\n"
|
|
"|0|0.5|\n"
|
|
"|1|0.5|\n"
|
|
"\n"
|
|
" *P(Asia):*\n\n"
|
|
"|Asia|value|\n"
|
|
"|:-:|:-:|\n"
|
|
"|0|0.99|\n"
|
|
"|1|0.01|\n\n";
|
|
auto formatter = [](Key key) { return key == A ? "Asia" : "Smoking"; };
|
|
std::string actual = priors.markdown(formatter);
|
|
EXPECT(actual == expected);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|