gtsam/gtsam/discrete/DiscreteConditional.cpp

226 lines
7.1 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file DiscreteConditional.cpp
* @date Feb 14, 2011
* @author Duy-Nguyen Ta
* @author Frank Dellaert
*/
#include <gtsam/discrete/DiscreteConditional.h>
#include <gtsam/discrete/Signature.h>
#include <gtsam/inference/Conditional-inst.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/debug.h>
#include <boost/make_shared.hpp>
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/uniform_real.hpp>
#include <boost/random/variate_generator.hpp>
#include <vector>
#include <algorithm>
#include <stdexcept>
using namespace std;
namespace gtsam {
// Instantiate base class
template class Conditional<DecisionTreeFactor, DiscreteConditional> ;
/* ******************************************************************************** */
DiscreteConditional::DiscreteConditional(const size_t nrFrontals,
const DecisionTreeFactor& f) :
BaseFactor(f / (*f.sum(nrFrontals))), BaseConditional(nrFrontals) {
}
/* ******************************************************************************** */
DiscreteConditional::DiscreteConditional(const DecisionTreeFactor& joint,
const DecisionTreeFactor& marginal, const boost::optional<Ordering>& orderedKeys) :
BaseFactor(
ISDEBUG("DiscreteConditional::COUNT") ? joint : joint / marginal), BaseConditional(
joint.size()-marginal.size()) {
if (ISDEBUG("DiscreteConditional::DiscreteConditional"))
cout << (firstFrontalKey()) << endl; //TODO Print all keys
if (orderedKeys) {
keys_.clear();
keys_.insert(keys_.end(), orderedKeys->begin(), orderedKeys->end());
}
}
/* ******************************************************************************** */
DiscreteConditional::DiscreteConditional(const Signature& signature) :
BaseFactor(signature.discreteKeysParentsFirst(), signature.cpt()), BaseConditional(
1) {
}
/* ******************************************************************************** */
void DiscreteConditional::print(const std::string& s,
const KeyFormatter& formatter) const {
std::cout << s << std::endl;
Potentials::print(s);
}
/* ******************************************************************************** */
bool DiscreteConditional::equals(const DiscreteFactor& other,
double tol) const {
if (!dynamic_cast<const DecisionTreeFactor*>(&other))
return false;
else {
const DecisionTreeFactor& f(
static_cast<const DecisionTreeFactor&>(other));
return DecisionTreeFactor::equals(f, tol);
}
}
/* ******************************************************************************** */
Potentials::ADT DiscreteConditional::choose(const Values& parentsValues) const {
ADT pFS(*this);
Key j; size_t value;
for(Key key: parents())
try {
j = (key);
value = parentsValues.at(j);
pFS = pFS.choose(j, value);
} catch (exception&) {
cout << "Key: " << j << " Value: " << value << endl;
parentsValues.print("parentsValues: ");
// pFS.print("pFS: ");
throw runtime_error("DiscreteConditional::choose: parent value missing");
};
return pFS;
}
/* ******************************************************************************** */
void DiscreteConditional::solveInPlace(Values& values) const {
// TODO: Abhijit asks: is this really the fastest way? He thinks it is.
ADT pFS = choose(values); // P(F|S=parentsValues)
// Initialize
Values mpe;
double maxP = 0;
DiscreteKeys keys;
for(Key idx: frontals()) {
DiscreteKey dk(idx, cardinality(idx));
keys & dk;
}
// Get all Possible Configurations
vector<Values> allPosbValues = cartesianProduct(keys);
// Find the MPE
for(Values& frontalVals: allPosbValues) {
double pValueS = pFS(frontalVals); // P(F=value|S=parentsValues)
// Update MPE solution if better
if (pValueS > maxP) {
maxP = pValueS;
mpe = frontalVals;
}
}
//set values (inPlace) to mpe
for(Key j: frontals()) {
values[j] = mpe[j];
}
}
/* ******************************************************************************** */
void DiscreteConditional::sampleInPlace(Values& values) const {
assert(nrFrontals() == 1);
Key j = (firstFrontalKey());
size_t sampled = sample(values); // Sample variable
values[j] = sampled; // store result in partial solution
}
/* ******************************************************************************** */
size_t DiscreteConditional::solve(const Values& parentsValues) const {
// TODO: is this really the fastest way? I think it is.
ADT pFS = choose(parentsValues); // P(F|S=parentsValues)
// Then, find the max over all remaining
// TODO, only works for one key now, seems horribly slow this way
size_t mpe = 0;
Values frontals;
double maxP = 0;
assert(nrFrontals() == 1);
Key j = (firstFrontalKey());
for (size_t value = 0; value < cardinality(j); value++) {
frontals[j] = value;
double pValueS = pFS(frontals); // P(F=value|S=parentsValues)
// Update MPE solution if better
if (pValueS > maxP) {
maxP = pValueS;
mpe = value;
}
}
return mpe;
}
/* ******************************************************************************** */
size_t DiscreteConditional::sample(const Values& parentsValues) const {
using boost::uniform_real;
static boost::mt19937 gen(2); // random number generator
bool debug = ISDEBUG("DiscreteConditional::sample");
// Get the correct conditional density
ADT pFS = choose(parentsValues); // P(F|S=parentsValues)
if (debug)
GTSAM_PRINT(pFS);
// get cumulative distribution function (cdf)
// TODO, only works for one key now, seems horribly slow this way
assert(nrFrontals() == 1);
Key j = (firstFrontalKey());
size_t nj = cardinality(j);
vector<double> cdf(nj);
Values frontals;
double sum = 0;
for (size_t value = 0; value < nj; value++) {
frontals[j] = value;
double pValueS = pFS(frontals); // P(F=value|S=parentsValues)
sum += pValueS; // accumulate
if (debug)
cout << sum << " ";
if (pValueS == 1) {
if (debug)
cout << "--> " << value << endl;
return value; // shortcut exit
}
cdf[value] = sum;
}
// inspired by http://www.boost.org/doc/libs/1_46_1/doc/html/boost_random/tutorial.html
uniform_real<> dist(0, cdf.back());
boost::variate_generator<boost::mt19937&, uniform_real<> > die(gen, dist);
size_t sampled = lower_bound(cdf.begin(), cdf.end(), die()) - cdf.begin();
if (debug)
cout << "-> " << sampled << endl;
return sampled;
return 0;
}
/* ******************************************************************************** */
//void DiscreteConditional::permuteWithInverse(
// const Permutation& inversePermutation) {
// IndexConditionalOrdered::permuteWithInverse(inversePermutation);
// Potentials::permuteWithInverse(inversePermutation);
//}
/* ******************************************************************************** */
}// namespace