408 lines
15 KiB
C++
408 lines
15 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file ProjectionFactor.h
|
|
* @brief Basic bearing factor from 2D measurement
|
|
* @author Chris Beall
|
|
* @author Richard Roberts
|
|
* @author Frank Dellaert
|
|
* @author Alex Cunningham
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam/nonlinear/NonlinearFactor.h>
|
|
#include <gtsam/geometry/PinholeCamera.h>
|
|
#include <gtsam/geometry/Pose3.h>
|
|
#include <gtsam_unstable/geometry/triangulation.h>
|
|
#include <boost/optional.hpp>
|
|
#include <boost/assign.hpp>
|
|
|
|
namespace gtsam {
|
|
|
|
/**
|
|
* Non-linear factor for a constraint derived from a 2D measurement. The calibration is known here.
|
|
* i.e. the main building block for visual SLAM.
|
|
* @addtogroup SLAM
|
|
*/
|
|
template<class POSE, class LANDMARK, class CALIBRATION = Cal3_S2>
|
|
class SmartProjectionFactor: public NonlinearFactor {
|
|
protected:
|
|
|
|
// Keep a copy of measurement and calibration for I/O
|
|
std::vector<Point2> measured_; ///< 2D measurement for each of the n views
|
|
///< (important that the order is the same as the keys that we use to create the factor)
|
|
boost::shared_ptr<CALIBRATION> K_; ///< shared pointer to calibration object
|
|
const SharedNoiseModel noise_; ///< noise model used
|
|
boost::optional<POSE> body_P_sensor_; ///< The pose of the sensor in the body frame
|
|
|
|
|
|
|
|
// verbosity handling for Cheirality Exceptions
|
|
bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false)
|
|
bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false)
|
|
|
|
public:
|
|
|
|
/// shorthand for base class type
|
|
typedef NonlinearFactor Base;
|
|
|
|
/// shorthand for this class
|
|
typedef SmartProjectionFactor<POSE, LANDMARK, CALIBRATION> This;
|
|
|
|
/// shorthand for a smart pointer to a factor
|
|
typedef boost::shared_ptr<This> shared_ptr;
|
|
|
|
/// Default constructor
|
|
SmartProjectionFactor() : throwCheirality_(false), verboseCheirality_(false) {}
|
|
|
|
/**
|
|
* Constructor
|
|
* TODO: Mark argument order standard (keys, measurement, parameters)
|
|
* @param measured is the 2n dimensional location of the n points in the n views (the measurements)
|
|
* @param model is the standard deviation (current version assumes that the uncertainty is the same for all views)
|
|
* @param poseKeys is the set of indices corresponding to the cameras observing the same landmark
|
|
* @param K shared pointer to the constant calibration
|
|
* @param body_P_sensor is the transform from body to sensor frame (default identity)
|
|
*/
|
|
SmartProjectionFactor(const std::vector<Point2> measured, const SharedNoiseModel& model,
|
|
std::vector<Key> poseKeys, const boost::shared_ptr<CALIBRATION>& K,
|
|
boost::optional<POSE> body_P_sensor = boost::none) :
|
|
measured_(measured), K_(K), noise_(model), body_P_sensor_(body_P_sensor),
|
|
throwCheirality_(false), verboseCheirality_(false) {
|
|
keys_.assign(poseKeys.begin(), poseKeys.end());
|
|
}
|
|
|
|
/**
|
|
* Constructor with exception-handling flags
|
|
* TODO: Mark argument order standard (keys, measurement, parameters)
|
|
* @param measured is the 2 dimensional location of point in image (the measurement)
|
|
* @param model is the standard deviation
|
|
* @param poseKey is the index of the camera
|
|
* @param K shared pointer to the constant calibration
|
|
* @param throwCheirality determines whether Cheirality exceptions are rethrown
|
|
* @param verboseCheirality determines whether exceptions are printed for Cheirality
|
|
* @param body_P_sensor is the transform from body to sensor frame (default identity)
|
|
*/
|
|
SmartProjectionFactor(const std::vector<Point2> measured, const SharedNoiseModel& model,
|
|
std::vector<Key> poseKeys, const boost::shared_ptr<CALIBRATION>& K,
|
|
bool throwCheirality, bool verboseCheirality,
|
|
boost::optional<POSE> body_P_sensor = boost::none) :
|
|
measured_(measured), K_(K), noise_(model), body_P_sensor_(body_P_sensor),
|
|
throwCheirality_(throwCheirality), verboseCheirality_(verboseCheirality) {}
|
|
|
|
/** Virtual destructor */
|
|
virtual ~SmartProjectionFactor() {}
|
|
|
|
/// @return a deep copy of this factor
|
|
// virtual gtsam::NonlinearFactor::shared_ptr clone() const {
|
|
// return boost::static_pointer_cast<gtsam::NonlinearFactor>(
|
|
// gtsam::NonlinearFactor::shared_ptr(new This(*this))); }
|
|
|
|
/**
|
|
* print
|
|
* @param s optional string naming the factor
|
|
* @param keyFormatter optional formatter useful for printing Symbols
|
|
*/
|
|
void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
|
|
std::cout << s << "SmartProjectionFactor, z = ";
|
|
BOOST_FOREACH(const Point2& p, measured_) {
|
|
std::cout << "measurement, p = "<< p << std::endl;
|
|
}
|
|
if(this->body_P_sensor_)
|
|
this->body_P_sensor_->print(" sensor pose in body frame: ");
|
|
Base::print("", keyFormatter);
|
|
}
|
|
|
|
/// equals
|
|
virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const {
|
|
const This *e = dynamic_cast<const This*>(&p);
|
|
|
|
bool areMeasurementsEqual = true;
|
|
for(size_t i = 0; i < measured_.size(); i++) {
|
|
if(this->measured_.at(i).equals(e->measured_.at(i), tol) == false)
|
|
areMeasurementsEqual = false;
|
|
break;
|
|
}
|
|
|
|
return e
|
|
&& Base::equals(p, tol)
|
|
&& areMeasurementsEqual
|
|
&& this->K_->equals(*e->K_, tol)
|
|
&& ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
|
|
}
|
|
|
|
// /// Evaluate error h(x)-z and optionally derivatives
|
|
// Vector unwhitenedError(const Values& x, boost::optional<std::vector<Matrix>&> H = boost::none) const{
|
|
//
|
|
// Vector a;
|
|
// return a;
|
|
//
|
|
//// Point3 point = x.at<Point3>(*keys_.end());
|
|
////
|
|
//// std::vector<KeyType>::iterator vit;
|
|
//// for (vit = keys_.begin(); vit != keys_.end()-1; vit++) {
|
|
//// Key key = (*vit);
|
|
//// Pose3 pose = x.at<Pose3>(key);
|
|
////
|
|
//// if(body_P_sensor_) {
|
|
//// if(H1) {
|
|
//// gtsam::Matrix H0;
|
|
//// PinholeCamera<CALIBRATION> camera(pose.compose(*body_P_sensor_, H0), *K_);
|
|
//// Point2 reprojectionError(camera.project(point, H1, H2) - measured_);
|
|
//// *H1 = *H1 * H0;
|
|
//// return reprojectionError.vector();
|
|
//// } else {
|
|
//// PinholeCamera<CALIBRATION> camera(pose.compose(*body_P_sensor_), *K_);
|
|
//// Point2 reprojectionError(camera.project(point, H1, H2) - measured_);
|
|
//// return reprojectionError.vector();
|
|
//// }
|
|
//// } else {
|
|
//// PinholeCamera<CALIBRATION> camera(pose, *K_);
|
|
//// Point2 reprojectionError(camera.project(point, H1, H2) - measured_);
|
|
//// return reprojectionError.vector();
|
|
//// }
|
|
//// }
|
|
//
|
|
// }
|
|
|
|
/// get the dimension of the factor (number of rows on linearization)
|
|
virtual size_t dim() const {
|
|
return 6*keys_.size();
|
|
}
|
|
|
|
/// linearize returns a Hessianfactor that is an approximation of error(p)
|
|
virtual boost::shared_ptr<GaussianFactor> linearize(const Values& values, const Ordering& ordering) const {
|
|
|
|
// Collect all poses (Cameras)
|
|
std::vector<Pose3> cameraPoses;
|
|
|
|
BOOST_FOREACH(const Key& k, keys_) {
|
|
if(body_P_sensor_)
|
|
cameraPoses.push_back(values.at<Pose3>(k).compose(*body_P_sensor_));
|
|
else
|
|
cameraPoses.push_back(values.at<Pose3>(k));
|
|
}
|
|
// We triangulate the 3D position of the landmark
|
|
boost::optional<Point3> point = triangulatePoint3(cameraPoses, measured_, *K_);
|
|
|
|
if (!point)
|
|
return HessianFactor::shared_ptr(new HessianFactor());
|
|
|
|
std::cout << "point " << *point << std::endl;
|
|
|
|
|
|
std::vector<Matrix> Gs(keys_.size()*(keys_.size()+1)/2);
|
|
std::vector<Vector> gs(keys_.size());
|
|
double f = 0;
|
|
// fill in the keys
|
|
std::vector<Index> js;
|
|
BOOST_FOREACH(const Key& k, keys_) {
|
|
js += ordering[k];
|
|
}
|
|
|
|
bool blockwise = false;
|
|
|
|
// {
|
|
// ==========================================================================================================
|
|
std::vector<Matrix> Hx(keys_.size());
|
|
std::vector<Matrix> Hl(keys_.size());
|
|
std::vector<Vector> b(keys_.size());
|
|
|
|
for(size_t i = 0; i < measured_.size(); i++) {
|
|
Pose3 pose = cameraPoses.at(i);
|
|
|
|
std::cout << "pose " << pose << std::endl;
|
|
|
|
PinholeCamera<CALIBRATION> camera(pose, *K_);
|
|
b.at(i) = ( camera.project(*point,Hx.at(i),Hl.at(i)) - measured_.at(i) ).vector();
|
|
}
|
|
|
|
// Shur complement trick
|
|
|
|
// Allocate m^2 matrix blocks
|
|
std::vector< std::vector<Matrix> > Hxl(keys_.size(), std::vector<Matrix>( keys_.size()));
|
|
|
|
// Allocate inv(Hl'Hl)
|
|
Matrix3 C;
|
|
for(size_t i1 = 0; i1 < keys_.size(); i1++) {
|
|
C += Hl.at(i1).transpose() * Hl.at(i1);
|
|
}
|
|
C = C.inverse();
|
|
|
|
// Calculate sub blocks
|
|
for(size_t i1 = 0; i1 < keys_.size(); i1++) {
|
|
for(size_t i2 = 0; i2 < keys_.size(); i2++) {
|
|
Hxl[i1][i2] = Hx.at(i1).transpose() * Hl.at(i1) * C * Hl.at(i2).transpose();
|
|
}
|
|
}
|
|
// Populate Gs and gs
|
|
int GsCount = 0;
|
|
for(size_t i1 = 0; i1 < keys_.size(); i1++) {
|
|
gs.at(i1) = Hx.at(i1).transpose() * b.at(i1);
|
|
|
|
for(size_t i2 = 0; i2 < keys_.size(); i2++) {
|
|
gs.at(i1) += Hxl[i1][i2] * b.at(i2);
|
|
|
|
if (i2 >= i1) {
|
|
Gs.at(GsCount) = Hx.at(i1).transpose() * Hx.at(i1) - Hxl[i1][i2] * Hx.at(i2);
|
|
GsCount++;
|
|
}
|
|
}
|
|
}
|
|
// }
|
|
|
|
// debug only
|
|
std::vector<Matrix> Gs2(keys_.size()*(keys_.size()+1)/2);
|
|
std::vector<Vector> gs2(keys_.size());
|
|
|
|
// { // version with full matrix multiplication
|
|
// ==========================================================================================================
|
|
Matrix Hx2 = zeros(2*keys_.size(), 6*keys_.size());
|
|
Matrix Hl2 = zeros(2*keys_.size(), 3);
|
|
Vector b2 = zero(2*keys_.size());
|
|
|
|
for(size_t i = 0; i < measured_.size(); i++) {
|
|
Pose3 pose = cameraPoses.at(i);
|
|
PinholeCamera<CALIBRATION> camera(pose, *K_);
|
|
Matrix Hxi, Hli;
|
|
Vector bi = ( camera.project(*point,Hxi,Hli) - measured_.at(i) ).vector();
|
|
Hx2.block( 2*i, 6*i, 2, 6 ) = Hxi;
|
|
Hl2.block( 2*i, 0, 2, 3 ) = Hli;
|
|
subInsert(b2,bi,2*i);
|
|
|
|
std::cout << "Hx " << Hx2 << std::endl;
|
|
std::cout << "Hl " << Hl2 << std::endl;
|
|
std::cout << "b " << b2.transpose() << std::endl;
|
|
std::cout << "Hxi - Hx.at(i) " << Hxi - Hx.at(i) << std::endl;
|
|
std::cout << "Hli - Hl.at(i) " << Hli - Hl.at(i) << std::endl;
|
|
}
|
|
|
|
// Shur complement trick
|
|
Matrix H(6*keys_.size(), 6*keys_.size());
|
|
Matrix3 C2 = (Hl2.transpose() * Hl2).inverse();
|
|
H = Hx2.transpose() * Hx2 - Hx2.transpose() * Hl2 * C2 * Hl2.transpose() * Hx2;
|
|
Vector gs2_vector = Hx2.transpose() * b2 - Hx2.transpose() * Hl2 * C2 * Hl2.transpose() * b2;
|
|
|
|
std::cout << "C - C2 " << C - C2 << std::endl;
|
|
|
|
// Populate Gs and gs
|
|
int GsCount2 = 0;
|
|
for(size_t i1 = 0; i1 < keys_.size(); i1++) {
|
|
gs2.at(i1) = sub(gs2_vector, 6*i1, 6*i1 + 6);
|
|
|
|
for(size_t i2 = 0; i2 < keys_.size(); i2++) {
|
|
if (i2 >= i1) {
|
|
Gs2.at(GsCount2) = H.block(6*i1, 6*i2, 6, 6);
|
|
GsCount2++;
|
|
}
|
|
}
|
|
}
|
|
// }
|
|
|
|
// Compare blockwise and full version
|
|
bool gs2_equal_gs = true;
|
|
for(size_t i = 0; i < measured_.size(); i++) {
|
|
std::cout << "gs.at(i) " << gs.at(i).transpose() << std::endl;
|
|
std::cout << "gs2.at(i) " << gs2.at(i).transpose() << std::endl;
|
|
std::cout << "gs.error " << (gs.at(i)- gs2.at(i)).transpose() << std::endl;
|
|
if( !equal(gs.at(i), gs2.at(i)), 1e-7) {
|
|
gs2_equal_gs = false;
|
|
}
|
|
}
|
|
|
|
std::cout << "gs2_equal_gs " << gs2_equal_gs << std::endl;
|
|
|
|
|
|
// ==========================================================================================================
|
|
return HessianFactor::shared_ptr(new HessianFactor(js, Gs2, gs2, f));
|
|
}
|
|
|
|
/**
|
|
* Calculate the error of the factor.
|
|
* This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian.
|
|
* In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model
|
|
* to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5.
|
|
*/
|
|
virtual double error(const Values& values) const {
|
|
if (this->active(values)) {
|
|
double overallError=0;
|
|
|
|
// Collect all poses (Cameras)
|
|
std::vector<Pose3> cameraPoses;
|
|
|
|
BOOST_FOREACH(const Key& k, keys_) {
|
|
if(body_P_sensor_)
|
|
cameraPoses.push_back(values.at<Pose3>(k).compose(*body_P_sensor_));
|
|
else
|
|
cameraPoses.push_back(values.at<Pose3>(k));
|
|
}
|
|
|
|
// We triangulate the 3D position of the landmark
|
|
boost::optional<Point3> point = triangulatePoint3(cameraPoses, measured_, *K_);
|
|
|
|
if(point)
|
|
{ // triangulation produced a good estimate of landmark position
|
|
|
|
// std::cout << "point " << *point << std::endl;
|
|
|
|
for(size_t i = 0; i < measured_.size(); i++) {
|
|
Pose3 pose = cameraPoses.at(i);
|
|
PinholeCamera<CALIBRATION> camera(pose, *K_);
|
|
// std::cout << "pose.compose(*body_P_sensor_) " << pose << std::endl;
|
|
|
|
Point2 reprojectionError(camera.project(*point) - measured_.at(i));
|
|
// std::cout << "reprojectionError " << reprojectionError << std::endl;
|
|
overallError += noise_->distance( reprojectionError.vector() );
|
|
// std::cout << "noise_->distance( reprojectionError.vector() ) " << noise_->distance( reprojectionError.vector() ) << std::endl;
|
|
}
|
|
return sqrt(overallError);
|
|
}else{ // triangulation failed: we deactivate the factor, then the error should not contribute to the overall error
|
|
return 0.0;
|
|
}
|
|
} else {
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
/** return the measurements */
|
|
const Vector& measured() const {
|
|
return measured_;
|
|
}
|
|
|
|
/** return the calibration object */
|
|
inline const boost::shared_ptr<CALIBRATION> calibration() const {
|
|
return K_;
|
|
}
|
|
|
|
/** return verbosity */
|
|
inline bool verboseCheirality() const { return verboseCheirality_; }
|
|
|
|
/** return flag for throwing cheirality exceptions */
|
|
inline bool throwCheirality() const { return throwCheirality_; }
|
|
|
|
private:
|
|
|
|
/// Serialization function
|
|
friend class boost::serialization::access;
|
|
template<class ARCHIVE>
|
|
void serialize(ARCHIVE & ar, const unsigned int version) {
|
|
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
|
ar & BOOST_SERIALIZATION_NVP(measured_);
|
|
ar & BOOST_SERIALIZATION_NVP(K_);
|
|
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
|
|
ar & BOOST_SERIALIZATION_NVP(throwCheirality_);
|
|
ar & BOOST_SERIALIZATION_NVP(verboseCheirality_);
|
|
}
|
|
};
|
|
} // \ namespace gtsam
|