gtsam/gtsam_unstable/slam/SmartProjectionFactor.h

408 lines
15 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ProjectionFactor.h
* @brief Basic bearing factor from 2D measurement
* @author Chris Beall
* @author Richard Roberts
* @author Frank Dellaert
* @author Alex Cunningham
*/
#pragma once
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam_unstable/geometry/triangulation.h>
#include <boost/optional.hpp>
#include <boost/assign.hpp>
namespace gtsam {
/**
* Non-linear factor for a constraint derived from a 2D measurement. The calibration is known here.
* i.e. the main building block for visual SLAM.
* @addtogroup SLAM
*/
template<class POSE, class LANDMARK, class CALIBRATION = Cal3_S2>
class SmartProjectionFactor: public NonlinearFactor {
protected:
// Keep a copy of measurement and calibration for I/O
std::vector<Point2> measured_; ///< 2D measurement for each of the n views
///< (important that the order is the same as the keys that we use to create the factor)
boost::shared_ptr<CALIBRATION> K_; ///< shared pointer to calibration object
const SharedNoiseModel noise_; ///< noise model used
boost::optional<POSE> body_P_sensor_; ///< The pose of the sensor in the body frame
// verbosity handling for Cheirality Exceptions
bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false)
bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false)
public:
/// shorthand for base class type
typedef NonlinearFactor Base;
/// shorthand for this class
typedef SmartProjectionFactor<POSE, LANDMARK, CALIBRATION> This;
/// shorthand for a smart pointer to a factor
typedef boost::shared_ptr<This> shared_ptr;
/// Default constructor
SmartProjectionFactor() : throwCheirality_(false), verboseCheirality_(false) {}
/**
* Constructor
* TODO: Mark argument order standard (keys, measurement, parameters)
* @param measured is the 2n dimensional location of the n points in the n views (the measurements)
* @param model is the standard deviation (current version assumes that the uncertainty is the same for all views)
* @param poseKeys is the set of indices corresponding to the cameras observing the same landmark
* @param K shared pointer to the constant calibration
* @param body_P_sensor is the transform from body to sensor frame (default identity)
*/
SmartProjectionFactor(const std::vector<Point2> measured, const SharedNoiseModel& model,
std::vector<Key> poseKeys, const boost::shared_ptr<CALIBRATION>& K,
boost::optional<POSE> body_P_sensor = boost::none) :
measured_(measured), K_(K), noise_(model), body_P_sensor_(body_P_sensor),
throwCheirality_(false), verboseCheirality_(false) {
keys_.assign(poseKeys.begin(), poseKeys.end());
}
/**
* Constructor with exception-handling flags
* TODO: Mark argument order standard (keys, measurement, parameters)
* @param measured is the 2 dimensional location of point in image (the measurement)
* @param model is the standard deviation
* @param poseKey is the index of the camera
* @param K shared pointer to the constant calibration
* @param throwCheirality determines whether Cheirality exceptions are rethrown
* @param verboseCheirality determines whether exceptions are printed for Cheirality
* @param body_P_sensor is the transform from body to sensor frame (default identity)
*/
SmartProjectionFactor(const std::vector<Point2> measured, const SharedNoiseModel& model,
std::vector<Key> poseKeys, const boost::shared_ptr<CALIBRATION>& K,
bool throwCheirality, bool verboseCheirality,
boost::optional<POSE> body_P_sensor = boost::none) :
measured_(measured), K_(K), noise_(model), body_P_sensor_(body_P_sensor),
throwCheirality_(throwCheirality), verboseCheirality_(verboseCheirality) {}
/** Virtual destructor */
virtual ~SmartProjectionFactor() {}
/// @return a deep copy of this factor
// virtual gtsam::NonlinearFactor::shared_ptr clone() const {
// return boost::static_pointer_cast<gtsam::NonlinearFactor>(
// gtsam::NonlinearFactor::shared_ptr(new This(*this))); }
/**
* print
* @param s optional string naming the factor
* @param keyFormatter optional formatter useful for printing Symbols
*/
void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
std::cout << s << "SmartProjectionFactor, z = ";
BOOST_FOREACH(const Point2& p, measured_) {
std::cout << "measurement, p = "<< p << std::endl;
}
if(this->body_P_sensor_)
this->body_P_sensor_->print(" sensor pose in body frame: ");
Base::print("", keyFormatter);
}
/// equals
virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const {
const This *e = dynamic_cast<const This*>(&p);
bool areMeasurementsEqual = true;
for(size_t i = 0; i < measured_.size(); i++) {
if(this->measured_.at(i).equals(e->measured_.at(i), tol) == false)
areMeasurementsEqual = false;
break;
}
return e
&& Base::equals(p, tol)
&& areMeasurementsEqual
&& this->K_->equals(*e->K_, tol)
&& ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
}
// /// Evaluate error h(x)-z and optionally derivatives
// Vector unwhitenedError(const Values& x, boost::optional<std::vector<Matrix>&> H = boost::none) const{
//
// Vector a;
// return a;
//
//// Point3 point = x.at<Point3>(*keys_.end());
////
//// std::vector<KeyType>::iterator vit;
//// for (vit = keys_.begin(); vit != keys_.end()-1; vit++) {
//// Key key = (*vit);
//// Pose3 pose = x.at<Pose3>(key);
////
//// if(body_P_sensor_) {
//// if(H1) {
//// gtsam::Matrix H0;
//// PinholeCamera<CALIBRATION> camera(pose.compose(*body_P_sensor_, H0), *K_);
//// Point2 reprojectionError(camera.project(point, H1, H2) - measured_);
//// *H1 = *H1 * H0;
//// return reprojectionError.vector();
//// } else {
//// PinholeCamera<CALIBRATION> camera(pose.compose(*body_P_sensor_), *K_);
//// Point2 reprojectionError(camera.project(point, H1, H2) - measured_);
//// return reprojectionError.vector();
//// }
//// } else {
//// PinholeCamera<CALIBRATION> camera(pose, *K_);
//// Point2 reprojectionError(camera.project(point, H1, H2) - measured_);
//// return reprojectionError.vector();
//// }
//// }
//
// }
/// get the dimension of the factor (number of rows on linearization)
virtual size_t dim() const {
return 6*keys_.size();
}
/// linearize returns a Hessianfactor that is an approximation of error(p)
virtual boost::shared_ptr<GaussianFactor> linearize(const Values& values, const Ordering& ordering) const {
// Collect all poses (Cameras)
std::vector<Pose3> cameraPoses;
BOOST_FOREACH(const Key& k, keys_) {
if(body_P_sensor_)
cameraPoses.push_back(values.at<Pose3>(k).compose(*body_P_sensor_));
else
cameraPoses.push_back(values.at<Pose3>(k));
}
// We triangulate the 3D position of the landmark
boost::optional<Point3> point = triangulatePoint3(cameraPoses, measured_, *K_);
if (!point)
return HessianFactor::shared_ptr(new HessianFactor());
std::cout << "point " << *point << std::endl;
std::vector<Matrix> Gs(keys_.size()*(keys_.size()+1)/2);
std::vector<Vector> gs(keys_.size());
double f = 0;
// fill in the keys
std::vector<Index> js;
BOOST_FOREACH(const Key& k, keys_) {
js += ordering[k];
}
bool blockwise = false;
// {
// ==========================================================================================================
std::vector<Matrix> Hx(keys_.size());
std::vector<Matrix> Hl(keys_.size());
std::vector<Vector> b(keys_.size());
for(size_t i = 0; i < measured_.size(); i++) {
Pose3 pose = cameraPoses.at(i);
std::cout << "pose " << pose << std::endl;
PinholeCamera<CALIBRATION> camera(pose, *K_);
b.at(i) = ( camera.project(*point,Hx.at(i),Hl.at(i)) - measured_.at(i) ).vector();
}
// Shur complement trick
// Allocate m^2 matrix blocks
std::vector< std::vector<Matrix> > Hxl(keys_.size(), std::vector<Matrix>( keys_.size()));
// Allocate inv(Hl'Hl)
Matrix3 C;
for(size_t i1 = 0; i1 < keys_.size(); i1++) {
C += Hl.at(i1).transpose() * Hl.at(i1);
}
C = C.inverse();
// Calculate sub blocks
for(size_t i1 = 0; i1 < keys_.size(); i1++) {
for(size_t i2 = 0; i2 < keys_.size(); i2++) {
Hxl[i1][i2] = Hx.at(i1).transpose() * Hl.at(i1) * C * Hl.at(i2).transpose();
}
}
// Populate Gs and gs
int GsCount = 0;
for(size_t i1 = 0; i1 < keys_.size(); i1++) {
gs.at(i1) = Hx.at(i1).transpose() * b.at(i1);
for(size_t i2 = 0; i2 < keys_.size(); i2++) {
gs.at(i1) += Hxl[i1][i2] * b.at(i2);
if (i2 >= i1) {
Gs.at(GsCount) = Hx.at(i1).transpose() * Hx.at(i1) - Hxl[i1][i2] * Hx.at(i2);
GsCount++;
}
}
}
// }
// debug only
std::vector<Matrix> Gs2(keys_.size()*(keys_.size()+1)/2);
std::vector<Vector> gs2(keys_.size());
// { // version with full matrix multiplication
// ==========================================================================================================
Matrix Hx2 = zeros(2*keys_.size(), 6*keys_.size());
Matrix Hl2 = zeros(2*keys_.size(), 3);
Vector b2 = zero(2*keys_.size());
for(size_t i = 0; i < measured_.size(); i++) {
Pose3 pose = cameraPoses.at(i);
PinholeCamera<CALIBRATION> camera(pose, *K_);
Matrix Hxi, Hli;
Vector bi = ( camera.project(*point,Hxi,Hli) - measured_.at(i) ).vector();
Hx2.block( 2*i, 6*i, 2, 6 ) = Hxi;
Hl2.block( 2*i, 0, 2, 3 ) = Hli;
subInsert(b2,bi,2*i);
std::cout << "Hx " << Hx2 << std::endl;
std::cout << "Hl " << Hl2 << std::endl;
std::cout << "b " << b2.transpose() << std::endl;
std::cout << "Hxi - Hx.at(i) " << Hxi - Hx.at(i) << std::endl;
std::cout << "Hli - Hl.at(i) " << Hli - Hl.at(i) << std::endl;
}
// Shur complement trick
Matrix H(6*keys_.size(), 6*keys_.size());
Matrix3 C2 = (Hl2.transpose() * Hl2).inverse();
H = Hx2.transpose() * Hx2 - Hx2.transpose() * Hl2 * C2 * Hl2.transpose() * Hx2;
Vector gs2_vector = Hx2.transpose() * b2 - Hx2.transpose() * Hl2 * C2 * Hl2.transpose() * b2;
std::cout << "C - C2 " << C - C2 << std::endl;
// Populate Gs and gs
int GsCount2 = 0;
for(size_t i1 = 0; i1 < keys_.size(); i1++) {
gs2.at(i1) = sub(gs2_vector, 6*i1, 6*i1 + 6);
for(size_t i2 = 0; i2 < keys_.size(); i2++) {
if (i2 >= i1) {
Gs2.at(GsCount2) = H.block(6*i1, 6*i2, 6, 6);
GsCount2++;
}
}
}
// }
// Compare blockwise and full version
bool gs2_equal_gs = true;
for(size_t i = 0; i < measured_.size(); i++) {
std::cout << "gs.at(i) " << gs.at(i).transpose() << std::endl;
std::cout << "gs2.at(i) " << gs2.at(i).transpose() << std::endl;
std::cout << "gs.error " << (gs.at(i)- gs2.at(i)).transpose() << std::endl;
if( !equal(gs.at(i), gs2.at(i)), 1e-7) {
gs2_equal_gs = false;
}
}
std::cout << "gs2_equal_gs " << gs2_equal_gs << std::endl;
// ==========================================================================================================
return HessianFactor::shared_ptr(new HessianFactor(js, Gs2, gs2, f));
}
/**
* Calculate the error of the factor.
* This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian.
* In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model
* to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5.
*/
virtual double error(const Values& values) const {
if (this->active(values)) {
double overallError=0;
// Collect all poses (Cameras)
std::vector<Pose3> cameraPoses;
BOOST_FOREACH(const Key& k, keys_) {
if(body_P_sensor_)
cameraPoses.push_back(values.at<Pose3>(k).compose(*body_P_sensor_));
else
cameraPoses.push_back(values.at<Pose3>(k));
}
// We triangulate the 3D position of the landmark
boost::optional<Point3> point = triangulatePoint3(cameraPoses, measured_, *K_);
if(point)
{ // triangulation produced a good estimate of landmark position
// std::cout << "point " << *point << std::endl;
for(size_t i = 0; i < measured_.size(); i++) {
Pose3 pose = cameraPoses.at(i);
PinholeCamera<CALIBRATION> camera(pose, *K_);
// std::cout << "pose.compose(*body_P_sensor_) " << pose << std::endl;
Point2 reprojectionError(camera.project(*point) - measured_.at(i));
// std::cout << "reprojectionError " << reprojectionError << std::endl;
overallError += noise_->distance( reprojectionError.vector() );
// std::cout << "noise_->distance( reprojectionError.vector() ) " << noise_->distance( reprojectionError.vector() ) << std::endl;
}
return sqrt(overallError);
}else{ // triangulation failed: we deactivate the factor, then the error should not contribute to the overall error
return 0.0;
}
} else {
return 0.0;
}
}
/** return the measurements */
const Vector& measured() const {
return measured_;
}
/** return the calibration object */
inline const boost::shared_ptr<CALIBRATION> calibration() const {
return K_;
}
/** return verbosity */
inline bool verboseCheirality() const { return verboseCheirality_; }
/** return flag for throwing cheirality exceptions */
inline bool throwCheirality() const { return throwCheirality_; }
private:
/// Serialization function
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
ar & BOOST_SERIALIZATION_NVP(measured_);
ar & BOOST_SERIALIZATION_NVP(K_);
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
ar & BOOST_SERIALIZATION_NVP(throwCheirality_);
ar & BOOST_SERIALIZATION_NVP(verboseCheirality_);
}
};
} // \ namespace gtsam