gtsam/gtsam_unstable/slam/SmartProjectionPoseFactorRo...

473 lines
19 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SmartProjectionPoseFactorRollingShutter.h
* @brief Smart projection factor on poses modeling rolling shutter effect with
* given readout time
* @author Luca Carlone
*/
#pragma once
#include <gtsam/geometry/CameraSet.h>
#include <gtsam/slam/SmartProjectionFactor.h>
#include <gtsam_unstable/dllexport.h>
namespace gtsam {
/**
*
* @ingroup slam
*
* If you are using the factor, please cite:
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert,
* Eliminating conditionally independent sets in factor graphs:
* a unifying perspective based on smart factors,
* Int. Conf. on Robotics and Automation (ICRA), 2014.
*/
/**
* This factor optimizes two consecutive poses of the body assuming a rolling
* shutter model of the camera with given readout time. The factor requires that
* values contain (for each pixel observation) two consecutive camera poses from
* which the pixel observation pose can be interpolated.
* @ingroup slam
*/
template <class CAMERA>
class SmartProjectionPoseFactorRollingShutter
: public SmartProjectionFactor<CAMERA> {
private:
typedef SmartProjectionFactor<CAMERA> Base;
typedef SmartProjectionPoseFactorRollingShutter<CAMERA> This;
typedef typename CAMERA::CalibrationType CALIBRATION;
typedef typename CAMERA::Measurement MEASUREMENT;
typedef typename CAMERA::MeasurementVector MEASUREMENTS;
protected:
/// The keys of the pose of the body (with respect to an external world
/// frame): two consecutive poses for each observation
std::vector<std::pair<Key, Key>> world_P_body_key_pairs_;
/// interpolation factor (one for each observation) to interpolate between
/// pair of consecutive poses
std::vector<double> alphas_;
/// one or more cameras taking observations (fixed poses wrt body + fixed
/// intrinsics)
std::shared_ptr<typename Base::Cameras> cameraRig_;
/// vector of camera Ids (one for each observation, in the same order),
/// identifying which camera took the measurement
FastVector<size_t> cameraIds_;
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
static const int DimBlock =
12; ///< size of the variable stacking 2 poses from which the observation
///< pose is interpolated
static const int DimPose = 6; ///< Pose3 dimension
static const int ZDim = 2; ///< Measurement dimension (Point2)
typedef Eigen::Matrix<double, ZDim, DimBlock>
MatrixZD; // F blocks (derivatives wrt block of 2 poses)
typedef std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD>>
FBlocks; // vector of F blocks
typedef CAMERA Camera;
typedef CameraSet<CAMERA> Cameras;
/// shorthand for a smart pointer to a factor
typedef std::shared_ptr<This> shared_ptr;
/// Default constructor, only for serialization
SmartProjectionPoseFactorRollingShutter() {}
/**
* Constructor
* @param Isotropic measurement noise
* @param cameraRig set of cameras (fixed poses wrt body and intrinsics)
* taking the measurements
* @param params internal parameters of the smart factors
*/
SmartProjectionPoseFactorRollingShutter(
const SharedNoiseModel& sharedNoiseModel,
const std::shared_ptr<Cameras>& cameraRig,
const SmartProjectionParams& params = SmartProjectionParams())
: Base(sharedNoiseModel, params), cameraRig_(cameraRig) {
// throw exception if configuration is not supported by this factor
if (Base::params_.degeneracyMode != gtsam::ZERO_ON_DEGENERACY)
throw std::runtime_error(
"SmartProjectionRigFactor: "
"degeneracyMode must be set to ZERO_ON_DEGENERACY");
if (Base::params_.linearizationMode != gtsam::HESSIAN)
throw std::runtime_error(
"SmartProjectionRigFactor: "
"linearizationMode must be set to HESSIAN");
}
/**
* add a new measurement, with 2 pose keys, interpolation factor, and cameraId
* @param measured 2-dimensional location of the projection of a single
* landmark in a single view (the measurement), interpolated from the 2 poses
* @param world_P_body_key1 key corresponding to the first body poses (time <=
* time pixel is acquired)
* @param world_P_body_key2 key corresponding to the second body poses (time
* >= time pixel is acquired)
* @param alpha interpolation factor in [0,1], such that if alpha = 0 the
* interpolated pose is the same as world_P_body_key1
* @param cameraId ID of the camera taking the measurement (default 0)
*/
void add(const MEASUREMENT& measured, const Key& world_P_body_key1,
const Key& world_P_body_key2, const double& alpha,
const size_t& cameraId = 0) {
// store measurements in base class
this->measured_.push_back(measured);
// store the pair of keys for each measurement, in the same order
world_P_body_key_pairs_.push_back(
std::make_pair(world_P_body_key1, world_P_body_key2));
// also store keys in the keys_ vector: these keys are assumed to be
// unique, so we avoid duplicates here
if (std::find(this->keys_.begin(), this->keys_.end(), world_P_body_key1) ==
this->keys_.end())
this->keys_.push_back(world_P_body_key1); // add only unique keys
if (std::find(this->keys_.begin(), this->keys_.end(), world_P_body_key2) ==
this->keys_.end())
this->keys_.push_back(world_P_body_key2); // add only unique keys
// store interpolation factor
alphas_.push_back(alpha);
// store id of the camera taking the measurement
cameraIds_.push_back(cameraId);
}
/**
* Variant of the previous "add" function in which we include multiple
* measurements
* @param measurements vector of the 2m dimensional location of the projection
* of a single landmark in the m views (the measurements)
* @param world_P_body_key_pairs vector where the i-th element contains a pair
* of keys corresponding to the pair of poses from which the observation pose
* for the i0-th measurement can be interpolated
* @param alphas vector of interpolation params (in [0,1]), one for each
* measurement (in the same order)
* @param cameraIds IDs of the cameras taking each measurement (same order as
* the measurements)
*/
void add(const MEASUREMENTS& measurements,
const std::vector<std::pair<Key, Key>>& world_P_body_key_pairs,
const std::vector<double>& alphas,
const FastVector<size_t>& cameraIds = FastVector<size_t>()) {
if (world_P_body_key_pairs.size() != measurements.size() ||
world_P_body_key_pairs.size() != alphas.size() ||
(world_P_body_key_pairs.size() != cameraIds.size() &&
cameraIds.size() != 0)) { // cameraIds.size()=0 is default
throw std::runtime_error(
"SmartProjectionPoseFactorRollingShutter: "
"trying to add inconsistent inputs");
}
if (cameraIds.size() == 0 && cameraRig_->size() > 1) {
throw std::runtime_error(
"SmartProjectionPoseFactorRollingShutter: "
"camera rig includes multiple camera "
"but add did not input cameraIds");
}
for (size_t i = 0; i < measurements.size(); i++) {
add(measurements[i], world_P_body_key_pairs[i].first,
world_P_body_key_pairs[i].second, alphas[i],
cameraIds.size() == 0 ? 0
: cameraIds[i]); // use 0 as default if
// cameraIds was not specified
}
}
/// return (for each observation) the keys of the pair of poses from which we
/// interpolate
const std::vector<std::pair<Key, Key>>& world_P_body_key_pairs() const {
return world_P_body_key_pairs_;
}
/// return the interpolation factors alphas
const std::vector<double>& alphas() const { return alphas_; }
/// return the calibration object
const std::shared_ptr<Cameras>& cameraRig() const { return cameraRig_; }
/// return the calibration object
const FastVector<size_t>& cameraIds() const { return cameraIds_; }
/**
* print
* @param s optional string naming the factor
* @param keyFormatter optional formatter useful for printing Symbols
*/
void print(
const std::string& s = "",
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
std::cout << s << "SmartProjectionPoseFactorRollingShutter: \n ";
for (size_t i = 0; i < cameraIds_.size(); i++) {
std::cout << "-- Measurement nr " << i << std::endl;
std::cout << " pose1 key: "
<< keyFormatter(world_P_body_key_pairs_[i].first) << std::endl;
std::cout << " pose2 key: "
<< keyFormatter(world_P_body_key_pairs_[i].second) << std::endl;
std::cout << " alpha: " << alphas_[i] << std::endl;
std::cout << "cameraId: " << cameraIds_[i] << std::endl;
(*cameraRig_)[cameraIds_[i]].print("camera in rig:\n");
}
Base::print("", keyFormatter);
}
/// equals
bool equals(const NonlinearFactor& p, double tol = 1e-9) const override {
const SmartProjectionPoseFactorRollingShutter<CAMERA>* e =
dynamic_cast<const SmartProjectionPoseFactorRollingShutter<CAMERA>*>(
&p);
double keyPairsEqual = true;
if (this->world_P_body_key_pairs_.size() ==
e->world_P_body_key_pairs().size()) {
for (size_t k = 0; k < this->world_P_body_key_pairs_.size(); k++) {
const Key key1own = world_P_body_key_pairs_[k].first;
const Key key1e = e->world_P_body_key_pairs()[k].first;
const Key key2own = world_P_body_key_pairs_[k].second;
const Key key2e = e->world_P_body_key_pairs()[k].second;
if (!(key1own == key1e) || !(key2own == key2e)) {
keyPairsEqual = false;
break;
}
}
} else {
keyPairsEqual = false;
}
return e && Base::equals(p, tol) && alphas_ == e->alphas() &&
keyPairsEqual && cameraRig_->equals(*(e->cameraRig())) &&
std::equal(cameraIds_.begin(), cameraIds_.end(),
e->cameraIds().begin());
}
/**
* Collect all cameras involved in this factor
* @param values Values structure which must contain camera poses
* corresponding to keys involved in this factor
* @return Cameras
*/
typename Base::Cameras cameras(const Values& values) const override {
typename Base::Cameras cameras;
for (size_t i = 0; i < this->measured_.size();
i++) { // for each measurement
const Pose3& w_P_body1 =
values.at<Pose3>(world_P_body_key_pairs_[i].first);
const Pose3& w_P_body2 =
values.at<Pose3>(world_P_body_key_pairs_[i].second);
double interpolationFactor = alphas_[i];
const Pose3& w_P_body =
interpolate<Pose3>(w_P_body1, w_P_body2, interpolationFactor);
const typename Base::Camera& camera_i = (*cameraRig_)[cameraIds_[i]];
const Pose3& body_P_cam = camera_i.pose();
const Pose3& w_P_cam = w_P_body.compose(body_P_cam);
cameras.emplace_back(w_P_cam,
make_shared<typename CAMERA::CalibrationType>(
camera_i.calibration()));
}
return cameras;
}
/**
* error calculates the error of the factor.
*/
double error(const Values& values) const override {
if (this->active(values)) {
return this->totalReprojectionError(this->cameras(values));
} else { // else of active flag
return 0.0;
}
}
/**
* Compute jacobian F, E and error vector at a given linearization point
* @param values Values structure which must contain camera poses
* corresponding to keys involved in this factor
* @return Return arguments are the camera jacobians Fs (including the
* jacobian with respect to both body poses we interpolate from), the point
* Jacobian E, and the error vector b. Note that the jacobians are computed
* for a given point.
*/
void computeJacobiansWithTriangulatedPoint(FBlocks& Fs, Matrix& E, Vector& b,
const Values& values) const {
if (!this->result_) {
throw("computeJacobiansWithTriangulatedPoint");
} else { // valid result: compute jacobians
size_t numViews = this->measured_.size();
E = Matrix::Zero(2 * numViews,
3); // a Point2 for each view (point jacobian)
b = Vector::Zero(2 * numViews); // a Point2 for each view
// intermediate Jacobians
Eigen::Matrix<double, ZDim, DimPose> dProject_dPoseCam;
Eigen::Matrix<double, DimPose, DimPose> dInterpPose_dPoseBody1,
dInterpPose_dPoseBody2, dPoseCam_dInterpPose;
Eigen::Matrix<double, ZDim, 3> Ei;
for (size_t i = 0; i < numViews; i++) { // for each camera/measurement
auto w_P_body1 = values.at<Pose3>(world_P_body_key_pairs_[i].first);
auto w_P_body2 = values.at<Pose3>(world_P_body_key_pairs_[i].second);
double interpolationFactor = alphas_[i];
// get interpolated pose:
auto w_P_body =
interpolate<Pose3>(w_P_body1, w_P_body2, interpolationFactor,
dInterpPose_dPoseBody1, dInterpPose_dPoseBody2);
const typename Base::Camera& camera_i = (*cameraRig_)[cameraIds_[i]];
auto body_P_cam = camera_i.pose();
auto w_P_cam = w_P_body.compose(body_P_cam, dPoseCam_dInterpPose);
typename Base::Camera camera(
w_P_cam, make_shared<typename CAMERA::CalibrationType>(
camera_i.calibration()));
// get jacobians and error vector for current measurement
Point2 reprojectionError_i = camera.reprojectionError(
*this->result_, this->measured_.at(i), dProject_dPoseCam, Ei);
Eigen::Matrix<double, ZDim, DimBlock> J; // 2 x 12
J.block(0, 0, ZDim, 6) =
dProject_dPoseCam * dPoseCam_dInterpPose *
dInterpPose_dPoseBody1; // (2x6) * (6x6) * (6x6)
J.block(0, 6, ZDim, 6) =
dProject_dPoseCam * dPoseCam_dInterpPose *
dInterpPose_dPoseBody2; // (2x6) * (6x6) * (6x6)
// fit into the output structures
Fs.push_back(J);
size_t row = 2 * i;
b.segment<ZDim>(row) = -reprojectionError_i;
E.block<ZDim, 3>(row, 0) = Ei;
}
}
}
/// linearize and return a Hessianfactor that is an approximation of error(p)
std::shared_ptr<RegularHessianFactor<DimPose>> createHessianFactor(
const Values& values, const double& lambda = 0.0,
bool diagonalDamping = false) const {
// we may have multiple observation sharing the same keys (due to the
// rolling shutter interpolation), hence the number of unique keys may be
// smaller than 2 * nrMeasurements
size_t nrUniqueKeys =
this->keys_
.size(); // note: by construction, keys_ only contains unique keys
typename Base::Cameras cameras = this->cameras(values);
// Create structures for Hessian Factors
KeyVector js;
std::vector<Matrix> Gs(nrUniqueKeys * (nrUniqueKeys + 1) / 2);
std::vector<Vector> gs(nrUniqueKeys);
if (this->measured_.size() !=
cameras.size()) // 1 observation per interpolated camera
throw std::runtime_error(
"SmartProjectionPoseFactorRollingShutter: "
"measured_.size() inconsistent with input");
// triangulate 3D point at given linearization point
this->triangulateSafe(cameras);
if (!this->result_) { // failed: return "empty/zero" Hessian
if (this->params_.degeneracyMode == ZERO_ON_DEGENERACY) {
for (Matrix& m : Gs) m = Matrix::Zero(DimPose, DimPose);
for (Vector& v : gs) v = Vector::Zero(DimPose);
return std::make_shared<RegularHessianFactor<DimPose>>(this->keys_,
Gs, gs, 0.0);
} else {
throw std::runtime_error(
"SmartProjectionPoseFactorRollingShutter: "
"only supported degeneracy mode is ZERO_ON_DEGENERACY");
}
}
// compute Jacobian given triangulated 3D Point
FBlocks Fs;
Matrix E;
Vector b;
this->computeJacobiansWithTriangulatedPoint(Fs, E, b, values);
// Whiten using noise model
this->noiseModel_->WhitenSystem(E, b);
for (size_t i = 0; i < Fs.size(); i++)
Fs[i] = this->noiseModel_->Whiten(Fs[i]);
Matrix3 P = Cameras::PointCov(E, lambda, diagonalDamping);
// Collect all the key pairs: these are the keys that correspond to the
// blocks in Fs (on which we apply the Schur Complement)
KeyVector nonuniqueKeys;
for (size_t i = 0; i < world_P_body_key_pairs_.size(); i++) {
nonuniqueKeys.push_back(world_P_body_key_pairs_.at(i).first);
nonuniqueKeys.push_back(world_P_body_key_pairs_.at(i).second);
}
// Build augmented Hessian (with last row/column being the information
// vector) Note: we need to get the augumented hessian wrt the unique keys
// in key_
SymmetricBlockMatrix augmentedHessianUniqueKeys =
Base::Cameras::template SchurComplementAndRearrangeBlocks<3, 12, 6>(
Fs, E, P, b, nonuniqueKeys, this->keys_);
return std::make_shared<RegularHessianFactor<DimPose>>(
this->keys_, augmentedHessianUniqueKeys);
}
/**
* Linearize to Gaussian Factor (possibly adding a damping factor Lambda for
* LM)
* @param values Values structure which must contain camera poses and
* extrinsic pose for this factor
* @return a Gaussian factor
*/
std::shared_ptr<GaussianFactor> linearizeDamped(
const Values& values, const double& lambda = 0.0) const {
// depending on flag set on construction we may linearize to different
// linear factors
switch (this->params_.linearizationMode) {
case HESSIAN:
return this->createHessianFactor(values, lambda);
default:
throw std::runtime_error(
"SmartProjectionPoseFactorRollingShutter: "
"unknown linearization mode");
}
}
/// linearize
std::shared_ptr<GaussianFactor> linearize(
const Values& values) const override {
return this->linearizeDamped(values);
}
private:
#ifdef GTSAM_ENABLE_BOOST_SERIALIZATION ///
/// Serialization function
friend class boost::serialization::access;
template <class ARCHIVE>
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
}
#endif
};
// end of class declaration
/// traits
template <class CAMERA>
struct traits<SmartProjectionPoseFactorRollingShutter<CAMERA>>
: public Testable<SmartProjectionPoseFactorRollingShutter<CAMERA>> {};
} // namespace gtsam