gtsam/gtsam/linear/HessianFactor.h

420 lines
17 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file HessianFactor.h
* @brief Contains the HessianFactor class, a general quadratic factor
* @author Richard Roberts
* @date Dec 8, 2010
*/
#pragma once
#include <gtsam/linear/GaussianFactor.h>
#include <gtsam/linear/Scatter.h>
#include <gtsam/base/SymmetricBlockMatrix.h>
#include <gtsam/base/FastVector.h>
#include <boost/make_shared.hpp>
namespace gtsam {
// Forward declarations
class Ordering;
class JacobianFactor;
class HessianFactor;
class GaussianConditional;
class GaussianBayesNet;
class GaussianFactorGraph;
/**
* @brief A Gaussian factor using the canonical parameters (information form)
*
* HessianFactor implements a general quadratic factor of the form
* \f[ E(x) = 0.5 x^T G x - x^T g + 0.5 f \f]
* that stores the matrix \f$ G \f$, the vector \f$ g \f$, and the constant term \f$ f \f$.
*
* When \f$ G \f$ is positive semidefinite, this factor represents a Gaussian,
* in which case \f$ G \f$ is the information matrix \f$ \Lambda \f$,
* \f$ g \f$ is the information vector \f$ \eta \f$, and \f$ f \f$ is the residual
* sum-square-error at the mean, when \f$ x = \mu \f$.
*
* Indeed, the negative log-likelihood of a Gaussian is (up to a constant)
* @f$ E(x) = 0.5(x-\mu)^T P^{-1} (x-\mu) @f$
* with @f$ \mu @f$ the mean and @f$ P @f$ the covariance matrix. Expanding the product we get
* @f[
* E(x) = 0.5 x^T P^{-1} x - x^T P^{-1} \mu + 0.5 \mu^T P^{-1} \mu
* @f]
* We define the Information matrix (or Hessian) @f$ \Lambda = P^{-1} @f$
* and the information vector @f$ \eta = P^{-1} \mu = \Lambda \mu @f$
* to arrive at the canonical form of the Gaussian:
* @f[
* E(x) = 0.5 x^T \Lambda x - x^T \eta + 0.5 \mu^T \Lambda \mu
* @f]
*
* This factor is one of the factors that can be in a GaussianFactorGraph.
* It may be returned from NonlinearFactor::linearize(), but is also
* used internally to store the Hessian during Cholesky elimination.
*
* This can represent a quadratic factor with characteristics that cannot be
* represented using a JacobianFactor (which has the form
* \f$ E(x) = \Vert Ax - b \Vert^2 \f$ and stores the Jacobian \f$ A \f$
* and error vector \f$ b \f$, i.e. is a sum-of-squares factor). For example,
* a HessianFactor need not be positive semidefinite, it can be indefinite or
* even negative semidefinite.
*
* If a HessianFactor is indefinite or negative semi-definite, then in order
* for solving the linear system to be possible,
* the Hessian of the full system must be positive definite (i.e. when all
* small Hessians are combined, the result must be positive definite). If
* this is not the case, an error will occur during elimination.
*
* This class stores G, g, and f as an augmented matrix HessianFactor::matrix_.
* The upper-left n x n blocks of HessianFactor::matrix_ store the upper-right
* triangle of G, the upper-right-most column of length n of HessianFactor::matrix_
* stores g, and the lower-right entry of HessianFactor::matrix_ stores f, i.e.
* \code
HessianFactor::matrix_ = [ G11 G12 G13 ... g1
0 G22 G23 ... g2
0 0 G33 ... g3
: : : :
0 0 0 ... f ]
\endcode
Blocks can be accessed as follows:
\code
G11 = info(begin(), begin());
G12 = info(begin(), begin()+1);
G23 = info(begin()+1, begin()+2);
g2 = linearTerm(begin()+1);
f = constantTerm();
.......
\endcode
*/
class GTSAM_EXPORT HessianFactor : public GaussianFactor {
protected:
SymmetricBlockMatrix info_; ///< The full augmented information matrix, s.t. the quadratic error is 0.5*[x -1]'*H*[x -1]
public:
typedef GaussianFactor Base; ///< Typedef to base class
typedef HessianFactor This; ///< Typedef to this class
typedef boost::shared_ptr<This> shared_ptr; ///< A shared_ptr to this class
typedef SymmetricBlockMatrix::Block Block; ///< A block from the Hessian matrix
typedef SymmetricBlockMatrix::constBlock constBlock; ///< A block from the Hessian matrix (const version)
/** default constructor for I/O */
HessianFactor();
/** Construct a unary factor. G is the quadratic term (Hessian matrix), g
* the linear term (a vector), and f the constant term. The quadratic
* error is:
* 0.5*(f - 2*x'*g + x'*G*x)
*/
HessianFactor(Key j, const Matrix& G, const Vector& g, double f);
/** Construct a unary factor, given a mean and covariance matrix.
* error is 0.5*(x-mu)'*inv(Sigma)*(x-mu)
*/
HessianFactor(Key j, const Vector& mu, const Matrix& Sigma);
/** Construct a binary factor. Gxx are the upper-triangle blocks of the
* quadratic term (the Hessian matrix), gx the pieces of the linear vector
* term, and f the constant term.
* JacobianFactor error is \f[ 0.5* (Ax-b)' M (Ax-b) = 0.5*x'A'MAx - x'A'Mb + 0.5*b'Mb \f]
* HessianFactor error is \f[ 0.5*(x'Gx - 2x'g + f) = 0.5*x'Gx - x'*g + 0.5*f \f]
* So, with \f$ A = [A1 A2] \f$ and \f$ G=A*'M*A = [A1';A2']*M*[A1 A2] \f$ we have
\code
n1*n1 G11 = A1'*M*A1
n1*n2 G12 = A1'*M*A2
n2*n2 G22 = A2'*M*A2
n1*1 g1 = A1'*M*b
n2*1 g2 = A2'*M*b
1*1 f = b'*M*b
\endcode
*/
HessianFactor(Key j1, Key j2,
const Matrix& G11, const Matrix& G12, const Vector& g1,
const Matrix& G22, const Vector& g2, double f);
/** Construct a ternary factor. Gxx are the upper-triangle blocks of the
* quadratic term (the Hessian matrix), gx the pieces of the linear vector
* term, and f the constant term.
*/
HessianFactor(Key j1, Key j2, Key j3,
const Matrix& G11, const Matrix& G12, const Matrix& G13, const Vector& g1,
const Matrix& G22, const Matrix& G23, const Vector& g2,
const Matrix& G33, const Vector& g3, double f);
/** Construct an n-way factor. Gs contains the upper-triangle blocks of the
* quadratic term (the Hessian matrix) provided in row-order, gs the pieces
* of the linear vector term, and f the constant term.
*/
HessianFactor(const KeyVector& js, const std::vector<Matrix>& Gs,
const std::vector<Vector>& gs, double f);
/** Constructor with an arbitrary number of keys and with the augmented information matrix
* specified as a block matrix. */
template<typename KEYS>
HessianFactor(const KEYS& keys, const SymmetricBlockMatrix& augmentedInformation);
/** Construct from a JacobianFactor (or from a GaussianConditional since it derives from it) */
explicit HessianFactor(const JacobianFactor& cg);
/** Attempt to construct from any GaussianFactor - currently supports JacobianFactor,
* HessianFactor, GaussianConditional, or any derived classes. */
explicit HessianFactor(const GaussianFactor& factor);
/** Combine a set of factors into a single dense HessianFactor */
explicit HessianFactor(const GaussianFactorGraph& factors,
boost::optional<const Scatter&> scatter = boost::none);
/** Destructor */
virtual ~HessianFactor() {}
/** Clone this HessianFactor */
virtual GaussianFactor::shared_ptr clone() const {
return boost::make_shared<HessianFactor>(*this); }
/** Print the factor for debugging and testing (implementing Testable) */
virtual void print(const std::string& s = "",
const KeyFormatter& formatter = DefaultKeyFormatter) const;
/** Compare to another factor for testing (implementing Testable) */
virtual bool equals(const GaussianFactor& lf, double tol = 1e-9) const;
/** Evaluate the factor error f(x), see above. */
virtual double error(const VectorValues& c) const; /** 0.5*[x -1]'*H*[x -1] (also see constructor documentation) */
/** Return the dimension of the variable pointed to by the given key iterator
* todo: Remove this in favor of keeping track of dimensions with variables?
* @param variable An iterator pointing to the slot in this factor. You can
* use, for example, begin() + 2 to get the 3rd variable in this factor.
*/
virtual DenseIndex getDim(const_iterator variable) const {
return info_.getDim(std::distance(begin(), variable));
}
/** Return the number of columns and rows of the Hessian matrix, including the information vector. */
size_t rows() const { return info_.rows(); }
/**
* Construct the corresponding anti-factor to negate information
* stored stored in this factor.
* @return a HessianFactor with negated Hessian matrices
*/
virtual GaussianFactor::shared_ptr negate() const;
/** Check if the factor is empty. TODO: How should this be defined? */
virtual bool empty() const { return size() == 0 /*|| rows() == 0*/; }
/** Return the constant term \f$ f \f$ as described above
* @return The constant term \f$ f \f$
*/
double constantTerm() const {
const auto view = info_.diagonalBlock(size());
return view(0, 0);
}
/** Return the constant term \f$ f \f$ as described above
* @return The constant term \f$ f \f$
*/
double& constantTerm() { return info_.diagonalBlock(size())(0, 0); }
/** Return the part of linear term \f$ g \f$ as described above corresponding to the requested variable.
* @param j Which block row to get, as an iterator pointing to the slot in this factor. You can
* use, for example, begin() + 2 to get the 3rd variable in this factor.
* @return The linear term \f$ g \f$ */
SymmetricBlockMatrix::constBlock linearTerm(const_iterator j) const {
assert(!empty());
return info_.aboveDiagonalBlock(j - begin(), size());
}
/** Return the complete linear term \f$ g \f$ as described above.
* @return The linear term \f$ g \f$ */
SymmetricBlockMatrix::constBlock linearTerm() const {
assert(!empty());
// get the last column (except the bottom right block)
return info_.aboveDiagonalRange(0, size(), size(), size() + 1);
}
/** Return the complete linear term \f$ g \f$ as described above.
* @return The linear term \f$ g \f$ */
SymmetricBlockMatrix::Block linearTerm() {
assert(!empty());
return info_.aboveDiagonalRange(0, size(), size(), size() + 1);
}
/// Return underlying information matrix.
const SymmetricBlockMatrix& info() const { return info_; }
/// Return non-const information matrix.
/// TODO(gareth): Review the sanity of having non-const access to this.
SymmetricBlockMatrix& info() { return info_; }
/** Return the augmented information matrix represented by this GaussianFactor.
* The augmented information matrix contains the information matrix with an
* additional column holding the information vector, and an additional row
* holding the transpose of the information vector. The lower-right entry
* contains the constant error term (when \f$ \delta x = 0 \f$). The
* augmented information matrix is described in more detail in HessianFactor,
* which in fact stores an augmented information matrix.
*
* For HessianFactor, this is the same as info() except that this function
* returns a complete symmetric matrix whereas info() returns a matrix where
* only the upper triangle is valid, but should be interpreted as symmetric.
* This is because info() returns only a reference to the internal
* representation of the augmented information matrix, which stores only the
* upper triangle.
*/
virtual Matrix augmentedInformation() const;
/// Return self-adjoint view onto the information matrix (NOT augmented).
Eigen::SelfAdjointView<SymmetricBlockMatrix::constBlock, Eigen::Upper> informationView() const;
/** Return the non-augmented information matrix represented by this
* GaussianFactor.
*/
virtual Matrix information() const;
/// Return the diagonal of the Hessian for this factor
virtual VectorValues hessianDiagonal() const;
/// Raw memory access version of hessianDiagonal
virtual void hessianDiagonal(double* d) const;
/// Return the block diagonal of the Hessian for this factor
virtual std::map<Key,Matrix> hessianBlockDiagonal() const;
/// Return (dense) matrix associated with factor
virtual std::pair<Matrix, Vector> jacobian() const;
/**
* Return (dense) matrix associated with factor
* The returned system is an augmented matrix: [A b]
* @param set weight to use whitening to bake in weights
*/
virtual Matrix augmentedJacobian() const;
/** Update an information matrix by adding the information corresponding to this factor
* (used internally during elimination).
* @param keys THe ordered vector of keys for the information matrix to be updated
* @param info The information matrix to be updated
*/
void updateHessian(const KeyVector& keys, SymmetricBlockMatrix* info) const;
/** Update another Hessian factor
* @param other the HessianFactor to be updated
*/
void updateHessian(HessianFactor* other) const {
assert(other);
updateHessian(other->keys_, &other->info_);
}
/** y += alpha * A'*A*x */
void multiplyHessianAdd(double alpha, const VectorValues& x, VectorValues& y) const;
/// eta for Hessian
VectorValues gradientAtZero() const;
/// Raw memory access version of gradientAtZero
virtual void gradientAtZero(double* d) const;
/**
* Compute the gradient at a key:
* \grad f(x_i) = \sum_j G_ij*x_j - g_i
*/
Vector gradient(Key key, const VectorValues& x) const;
/**
* In-place elimination that returns a conditional on (ordered) keys specified, and leaves
* this factor to be on the remaining keys (separator) only. Does dense partial Cholesky.
*/
boost::shared_ptr<GaussianConditional> eliminateCholesky(const Ordering& keys);
/// Solve the system A'*A delta = A'*b in-place, return delta as VectorValues
VectorValues solve();
#ifdef GTSAM_ALLOW_DEPRECATED_SINCE_V4
/// @name Deprecated
/// @{
const SymmetricBlockMatrix& matrixObject() const { return info_; }
/// @}
#endif
private:
/// Allocate for given scatter pattern
void Allocate(const Scatter& scatter);
/// Constructor with given scatter pattern, allocating but not initializing storage.
HessianFactor(const Scatter& scatter);
friend class NonlinearFactorGraph;
friend class NonlinearClusterTree;
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(GaussianFactor);
ar & BOOST_SERIALIZATION_NVP(info_);
}
};
/**
* Densely partially eliminate with Cholesky factorization. JacobianFactors are
* left-multiplied with their transpose to form the Hessian using the conversion constructor
* HessianFactor(const JacobianFactor&).
*
* If any factors contain constrained noise models, this function will fail because our current
* implementation cannot handle constrained noise models in Cholesky factorization. The
* function EliminatePreferCholesky() automatically does QR instead when this is the case.
*
* Variables are eliminated in the order specified in \c keys.
*
* @param factors Factors to combine and eliminate
* @param keys The variables to eliminate and their elimination ordering
* @return The conditional and remaining factor
*
* \addtogroup LinearSolving */
GTSAM_EXPORT std::pair<boost::shared_ptr<GaussianConditional>, boost::shared_ptr<HessianFactor> >
EliminateCholesky(const GaussianFactorGraph& factors, const Ordering& keys);
/**
* Densely partially eliminate with Cholesky factorization. JacobianFactors are
* left-multiplied with their transpose to form the Hessian using the conversion constructor
* HessianFactor(const JacobianFactor&).
*
* This function will fall back on QR factorization for any cliques containing JacobianFactor's
* with constrained noise models.
*
* Variables are eliminated in the order specified in \c keys.
*
* @param factors Factors to combine and eliminate
* @param keys The variables to eliminate and their elimination ordering
* @return The conditional and remaining factor
*
* \addtogroup LinearSolving */
GTSAM_EXPORT std::pair<boost::shared_ptr<GaussianConditional>, boost::shared_ptr<GaussianFactor> >
EliminatePreferCholesky(const GaussianFactorGraph& factors, const Ordering& keys);
/// traits
template<>
struct traits<HessianFactor> : public Testable<HessianFactor> {};
} // \ namespace gtsam
#include <gtsam/linear/HessianFactor-inl.h>