406 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			406 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 *  @file   testGaussianFactor.cpp
 | 
						|
 *  @brief  Unit tests for Linear Factor
 | 
						|
 *  @author Christian Potthast
 | 
						|
 *  @author Frank Dellaert
 | 
						|
 **/
 | 
						|
 | 
						|
#include <gtsam/slam/smallExample.h>
 | 
						|
#include <gtsam/nonlinear/Symbol.h>
 | 
						|
#include <gtsam/nonlinear/Ordering.h>
 | 
						|
#include <gtsam/linear/GaussianConditional.h>
 | 
						|
#include <gtsam/base/Matrix.h>
 | 
						|
#include <gtsam/base/Testable.h>
 | 
						|
 | 
						|
#include <CppUnitLite/TestHarness.h>
 | 
						|
 | 
						|
#include <boost/tuple/tuple.hpp>
 | 
						|
#include <boost/assign/std/list.hpp> // for operator +=
 | 
						|
#include <boost/assign/std/set.hpp>
 | 
						|
#include <boost/assign/std/map.hpp> // for insert
 | 
						|
using namespace boost::assign;
 | 
						|
 | 
						|
#include <iostream>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
 | 
						|
// Convenience for named keys
 | 
						|
using symbol_shorthand::X;
 | 
						|
using symbol_shorthand::L;
 | 
						|
 | 
						|
static SharedDiagonal
 | 
						|
	sigma0_1 = sharedSigma(2,0.1), sigma_02 = sharedSigma(2,0.2),
 | 
						|
	constraintModel = noiseModel::Constrained::All(2);
 | 
						|
 | 
						|
const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactor, linearFactor )
 | 
						|
{
 | 
						|
  Ordering ordering; ordering += kx1,kx2,kl1;
 | 
						|
 | 
						|
  Matrix I = eye(2);
 | 
						|
	Vector b = Vector_(2, 2.0, -1.0);
 | 
						|
	JacobianFactor expected(ordering[kx1], -10*I,ordering[kx2], 10*I, b, noiseModel::Unit::Create(2));
 | 
						|
 | 
						|
	// create a small linear factor graph
 | 
						|
	FactorGraph<JacobianFactor> fg = example::createGaussianFactorGraph(ordering);
 | 
						|
 | 
						|
	// get the factor kf2 from the factor graph
 | 
						|
	JacobianFactor::shared_ptr lf = fg[1];
 | 
						|
 | 
						|
	// check if the two factors are the same
 | 
						|
	EXPECT(assert_equal(expected,*lf));
 | 
						|
}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
// SL-FIX TEST( GaussianFactor, keys )
 | 
						|
//{
 | 
						|
//	// get the factor kf2 from the small linear factor graph
 | 
						|
//  Ordering ordering; ordering += kx1,kx2,kl1;
 | 
						|
//  GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
 | 
						|
//	GaussianFactor::shared_ptr lf = fg[1];
 | 
						|
//	list<Symbol> expected;
 | 
						|
//	expected.push_back(kx1);
 | 
						|
//	expected.push_back(kx2);
 | 
						|
//	EXPECT(lf->keys() == expected);
 | 
						|
//}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
// SL-FIX TEST( GaussianFactor, dimensions )
 | 
						|
//{
 | 
						|
//  // get the factor kf2 from the small linear factor graph
 | 
						|
//  Ordering ordering; ordering += kx1,kx2,kl1;
 | 
						|
//  GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
 | 
						|
//
 | 
						|
//  // Check a single factor
 | 
						|
//  Dimensions expected;
 | 
						|
//  insert(expected)(kx1, 2)(kx2, 2);
 | 
						|
//  Dimensions actual = fg[1]->dimensions();
 | 
						|
//  EXPECT(expected==actual);
 | 
						|
//}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactor, getDim )
 | 
						|
{
 | 
						|
	// get a factor
 | 
						|
  Ordering ordering; ordering += kx1,kx2,kl1;
 | 
						|
  GaussianFactorGraph fg = example::createGaussianFactorGraph(ordering);
 | 
						|
	GaussianFactor::shared_ptr factor = fg[0];
 | 
						|
 | 
						|
	// get the size of a variable
 | 
						|
	size_t actual = factor->getDim(factor->find(ordering[kx1]));
 | 
						|
 | 
						|
	// verify
 | 
						|
	size_t expected = 2;
 | 
						|
	EXPECT_LONGS_EQUAL(expected, actual);
 | 
						|
}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
// SL-FIX TEST( GaussianFactor, combine )
 | 
						|
//{
 | 
						|
//	// create a small linear factor graph
 | 
						|
//  Ordering ordering; ordering += kx1,kx2,kl1;
 | 
						|
//  GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
 | 
						|
//
 | 
						|
//	// get two factors from it and insert the factors into a vector
 | 
						|
//	vector<GaussianFactor::shared_ptr> lfg;
 | 
						|
//	lfg.push_back(fg[4 - 1]);
 | 
						|
//	lfg.push_back(fg[2 - 1]);
 | 
						|
//
 | 
						|
//	// combine in a factor
 | 
						|
//	GaussianFactor combined(lfg);
 | 
						|
//
 | 
						|
//	// sigmas
 | 
						|
//	double sigma2 = 0.1;
 | 
						|
//	double sigma4 = 0.2;
 | 
						|
//	Vector sigmas = Vector_(4, sigma4, sigma4, sigma2, sigma2);
 | 
						|
//
 | 
						|
//	// the expected combined linear factor
 | 
						|
//	Matrix Ax2 = Matrix_(4, 2, // x2
 | 
						|
//			-5., 0.,
 | 
						|
//			+0., -5.,
 | 
						|
//			10., 0.,
 | 
						|
//			+0., 10.);
 | 
						|
//
 | 
						|
//	Matrix Al1 = Matrix_(4, 2,	// l1
 | 
						|
//			5., 0.,
 | 
						|
//			0., 5.,
 | 
						|
//			0., 0.,
 | 
						|
//			0., 0.);
 | 
						|
//
 | 
						|
//	Matrix Ax1 = Matrix_(4, 2,	// x1
 | 
						|
//			0.00, 0., // f4
 | 
						|
//			0.00, 0., // f4
 | 
						|
//			-10., 0., // f2
 | 
						|
//			0.00, -10. // f2
 | 
						|
//	);
 | 
						|
//
 | 
						|
//	// the RHS
 | 
						|
//	Vector b2(4);
 | 
						|
//	b2(0) = -1.0;
 | 
						|
//	b2(1) =  1.5;
 | 
						|
//	b2(2) =  2.0;
 | 
						|
//	b2(3) = -1.0;
 | 
						|
//
 | 
						|
//	// use general constructor for making arbitrary factors
 | 
						|
//	vector<pair<Symbol, Matrix> > meas;
 | 
						|
//	meas.push_back(make_pair(kx2, Ax2));
 | 
						|
//	meas.push_back(make_pair(kl1, Al1));
 | 
						|
//	meas.push_back(make_pair(kx1, Ax1));
 | 
						|
//	GaussianFactor expected(meas, b2, noiseModel::Diagonal::Sigmas(ones(4)));
 | 
						|
//	EXPECT(assert_equal(expected,combined));
 | 
						|
//}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactor, error )
 | 
						|
{
 | 
						|
	// create a small linear factor graph
 | 
						|
  Ordering ordering; ordering += kx1,kx2,kl1;
 | 
						|
  GaussianFactorGraph fg = example::createGaussianFactorGraph(ordering);
 | 
						|
 | 
						|
	// get the first factor from the factor graph
 | 
						|
	GaussianFactor::shared_ptr lf = fg[0];
 | 
						|
 | 
						|
	// check the error of the first factor with noisy config
 | 
						|
	VectorValues cfg = example::createZeroDelta(ordering);
 | 
						|
 | 
						|
	// calculate the error from the factor kf1
 | 
						|
	// note the error is the same as in testNonlinearFactor
 | 
						|
	double actual = lf->error(cfg);
 | 
						|
	DOUBLES_EQUAL( 1.0, actual, 0.00000001 );
 | 
						|
}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
// SL-FIX TEST( GaussianFactor, eliminate )
 | 
						|
//{
 | 
						|
//	// create a small linear factor graph
 | 
						|
//  Ordering ordering; ordering += kx1,kx2,kl1;
 | 
						|
//  GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
 | 
						|
//
 | 
						|
//	// get two factors from it and insert the factors into a vector
 | 
						|
//	vector<GaussianFactor::shared_ptr> lfg;
 | 
						|
//	lfg.push_back(fg[4 - 1]);
 | 
						|
//	lfg.push_back(fg[2 - 1]);
 | 
						|
//
 | 
						|
//	// combine in a factor
 | 
						|
//	GaussianFactor combined(lfg);
 | 
						|
//
 | 
						|
//	// eliminate the combined factor
 | 
						|
//	GaussianConditional::shared_ptr actualCG;
 | 
						|
//	GaussianFactor::shared_ptr actualLF;
 | 
						|
//	boost::tie(actualCG,actualLF) = combined.eliminate(kx2);
 | 
						|
//
 | 
						|
//	// create expected Conditional Gaussian
 | 
						|
//	Matrix I = eye(2)*sqrt(125.0);
 | 
						|
//	Matrix R11 = I, S12 = -0.2*I, S13 = -0.8*I;
 | 
						|
//	Vector d = I*Vector_(2,0.2,-0.14);
 | 
						|
//
 | 
						|
//	// Check the conditional Gaussian
 | 
						|
//	GaussianConditional
 | 
						|
//	expectedCG(kx2, d, R11, kl1, S12, kx1, S13, repeat(2, 1.0));
 | 
						|
//
 | 
						|
//	// the expected linear factor
 | 
						|
//	I = eye(2)/0.2236;
 | 
						|
//	Matrix Bl1 = I, Bx1 = -I;
 | 
						|
//	Vector b1 = I*Vector_(2,0.0,0.2);
 | 
						|
//
 | 
						|
//	GaussianFactor expectedLF(kl1, Bl1, kx1, Bx1, b1, repeat(2,1.0));
 | 
						|
//
 | 
						|
//	// check if the result matches
 | 
						|
//	EXPECT(assert_equal(expectedCG,*actualCG,1e-3));
 | 
						|
//	EXPECT(assert_equal(expectedLF,*actualLF,1e-3));
 | 
						|
//}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactor, matrix )
 | 
						|
{
 | 
						|
	// create a small linear factor graph
 | 
						|
  Ordering ordering; ordering += kx1,kx2,kl1;
 | 
						|
  FactorGraph<JacobianFactor> fg = example::createGaussianFactorGraph(ordering);
 | 
						|
 | 
						|
	// get the factor kf2 from the factor graph
 | 
						|
	//GaussianFactor::shared_ptr lf = fg[1]; // NOTE: using the older version
 | 
						|
	Vector b2 = Vector_(2, 0.2, -0.1);
 | 
						|
	Matrix I = eye(2);
 | 
						|
  // render with a given ordering
 | 
						|
  Ordering ord;
 | 
						|
  ord += kx1,kx2;
 | 
						|
	JacobianFactor::shared_ptr lf(new JacobianFactor(ord[kx1], -I, ord[kx2], I, b2, sigma0_1));
 | 
						|
 | 
						|
	// Test whitened version
 | 
						|
	Matrix A_act1; Vector b_act1;
 | 
						|
	boost::tie(A_act1,b_act1) = lf->matrix(true);
 | 
						|
 | 
						|
	Matrix A1 = Matrix_(2,4,
 | 
						|
			-10.0,  0.0, 10.0,  0.0,
 | 
						|
			000.0,-10.0,  0.0, 10.0 );
 | 
						|
	Vector b1 = Vector_(2, 2.0, -1.0);
 | 
						|
 | 
						|
	EQUALITY(A_act1,A1);
 | 
						|
	EQUALITY(b_act1,b1);
 | 
						|
 | 
						|
	// Test unwhitened version
 | 
						|
	Matrix A_act2; Vector b_act2;
 | 
						|
	boost::tie(A_act2,b_act2) = lf->matrix(false);
 | 
						|
 | 
						|
 | 
						|
	Matrix A2 = Matrix_(2,4,
 | 
						|
			-1.0,  0.0, 1.0,  0.0,
 | 
						|
			000.0,-1.0,  0.0, 1.0 );
 | 
						|
	//Vector b2 = Vector_(2, 2.0, -1.0);
 | 
						|
 | 
						|
	EQUALITY(A_act2,A2);
 | 
						|
	EQUALITY(b_act2,b2);
 | 
						|
 | 
						|
	// Ensure that whitening is consistent
 | 
						|
	boost::shared_ptr<noiseModel::Gaussian> model = lf->get_model();
 | 
						|
	model->WhitenSystem(A_act2, b_act2);
 | 
						|
	EQUALITY(A_act1, A_act2);
 | 
						|
	EQUALITY(b_act1, b_act2);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactor, matrix_aug )
 | 
						|
{
 | 
						|
	// create a small linear factor graph
 | 
						|
  Ordering ordering; ordering += kx1,kx2,kl1;
 | 
						|
  FactorGraph<JacobianFactor> fg = example::createGaussianFactorGraph(ordering);
 | 
						|
 | 
						|
	// get the factor kf2 from the factor graph
 | 
						|
	//GaussianFactor::shared_ptr lf = fg[1];
 | 
						|
	Vector b2 = Vector_(2, 0.2, -0.1);
 | 
						|
	Matrix I = eye(2);
 | 
						|
  // render with a given ordering
 | 
						|
  Ordering ord;
 | 
						|
  ord += kx1,kx2;
 | 
						|
	JacobianFactor::shared_ptr lf(new JacobianFactor(ord[kx1], -I, ord[kx2], I, b2, sigma0_1));
 | 
						|
 | 
						|
 | 
						|
	// Test unwhitened version
 | 
						|
	Matrix Ab_act1;
 | 
						|
	Ab_act1 = lf->matrix_augmented(false);
 | 
						|
 | 
						|
	Matrix Ab1 = Matrix_(2,5,
 | 
						|
			-1.0,  0.0, 1.0,  0.0,  0.2,
 | 
						|
			00.0,- 1.0, 0.0,  1.0, -0.1 );
 | 
						|
 | 
						|
	EQUALITY(Ab_act1,Ab1);
 | 
						|
 | 
						|
	// Test whitened version
 | 
						|
	Matrix Ab_act2;
 | 
						|
	Ab_act2 = lf->matrix_augmented(true);
 | 
						|
 | 
						|
	Matrix Ab2 = Matrix_(2,5,
 | 
						|
		   -10.0,  0.0, 10.0,  0.0,  2.0,
 | 
						|
			00.0, -10.0,  0.0, 10.0, -1.0 );
 | 
						|
 | 
						|
	EQUALITY(Ab_act2,Ab2);
 | 
						|
 | 
						|
	// Ensure that whitening is consistent
 | 
						|
	boost::shared_ptr<noiseModel::Gaussian> model = lf->get_model();
 | 
						|
	model->WhitenInPlace(Ab_act1);
 | 
						|
	EQUALITY(Ab_act1, Ab_act2);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// small aux. function to print out lists of anything
 | 
						|
template<class T>
 | 
						|
void print(const list<T>& i) {
 | 
						|
	copy(i.begin(), i.end(), ostream_iterator<T> (cout, ","));
 | 
						|
	cout << endl;
 | 
						|
}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
// SL-FIX TEST( GaussianFactor, sparse )
 | 
						|
//{
 | 
						|
//	// create a small linear factor graph
 | 
						|
//  Ordering ordering; ordering += kx1,kx2,kl1;
 | 
						|
//  GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
 | 
						|
//
 | 
						|
//	// get the factor kf2 from the factor graph
 | 
						|
//	GaussianFactor::shared_ptr lf = fg[1];
 | 
						|
//
 | 
						|
//	// render with a given ordering
 | 
						|
//	Ordering ord;
 | 
						|
//	ord += kx1,kx2;
 | 
						|
//
 | 
						|
//	list<int> i,j;
 | 
						|
//	list<double> s;
 | 
						|
//	boost::tie(i,j,s) = lf->sparse(fg.columnIndices(ord));
 | 
						|
//
 | 
						|
//	list<int> i1,j1;
 | 
						|
//	i1 += 1,2,1,2;
 | 
						|
//	j1 += 1,2,3,4;
 | 
						|
//
 | 
						|
//	list<double> s1;
 | 
						|
//	s1 += -10,-10,10,10;
 | 
						|
//
 | 
						|
//	EXPECT(i==i1);
 | 
						|
//	EXPECT(j==j1);
 | 
						|
//	EXPECT(s==s1);
 | 
						|
//}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
// SL-FIX TEST( GaussianFactor, sparse2 )
 | 
						|
//{
 | 
						|
//	// create a small linear factor graph
 | 
						|
//  Ordering ordering; ordering += kx1,kx2,kl1;
 | 
						|
//  GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
 | 
						|
//
 | 
						|
//	// get the factor kf2 from the factor graph
 | 
						|
//	GaussianFactor::shared_ptr lf = fg[1];
 | 
						|
//
 | 
						|
//	// render with a given ordering
 | 
						|
//	Ordering ord;
 | 
						|
//	ord += kx2,kl1,kx1;
 | 
						|
//
 | 
						|
//	list<int> i,j;
 | 
						|
//	list<double> s;
 | 
						|
//	boost::tie(i,j,s) = lf->sparse(fg.columnIndices(ord));
 | 
						|
//
 | 
						|
//	list<int> i1,j1;
 | 
						|
//	i1 += 1,2,1,2;
 | 
						|
//	j1 += 5,6,1,2;
 | 
						|
//
 | 
						|
//	list<double> s1;
 | 
						|
//	s1 += -10,-10,10,10;
 | 
						|
//
 | 
						|
//	EXPECT(i==i1);
 | 
						|
//	EXPECT(j==j1);
 | 
						|
//	EXPECT(s==s1);
 | 
						|
//}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactor, size )
 | 
						|
{
 | 
						|
	// create a linear factor graph
 | 
						|
  Ordering ordering; ordering += kx1,kx2,kl1;
 | 
						|
  GaussianFactorGraph fg = example::createGaussianFactorGraph(ordering);
 | 
						|
 | 
						|
	// get some factors from the graph
 | 
						|
	boost::shared_ptr<GaussianFactor> factor1 = fg[0];
 | 
						|
	boost::shared_ptr<GaussianFactor> factor2 = fg[1];
 | 
						|
	boost::shared_ptr<GaussianFactor> factor3 = fg[2];
 | 
						|
 | 
						|
	EXPECT_LONGS_EQUAL(1, factor1->size());
 | 
						|
	EXPECT_LONGS_EQUAL(2, factor2->size());
 | 
						|
	EXPECT_LONGS_EQUAL(2, factor3->size());
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
 | 
						|
/* ************************************************************************* */
 |