gtsam/cpp/NonlinearConstraint.h

220 lines
7.4 KiB
C++

/*
* @file NonlinearConstraint.h
* @brief Implements nonlinear constraints that can be linearized and
* inserted into an existing nonlinear graph and solved via SQP
* @author Alex Cunningham
*/
#pragma once
#include <map>
#include <iostream>
#include "NonlinearFactor.h"
namespace gtsam {
/**
* Base class for nonlinear constraints
* This allows for both equality and inequality constraints,
* where equality constraints are active all the time (even slightly
* nonzero constraint functions will still be active - inequality
* constraints should be sure to force to actual zero)
*
* The measurement z in the underlying NonlinearFactor is the
* set of Lagrange multipliers.
*/
template <class Config>
class NonlinearConstraint : public NonlinearFactor<Config> {
protected:
/** key for the lagrange multipliers */
std::string lagrange_key_;
/** number of lagrange multipliers */
size_t p_;
public:
/** Constructor - sets the cost function and the lagrange multipliers
* @param lagrange_key is the label for the associated lagrange multipliers
* @param dim_lagrange is the number of associated constraints
*/
NonlinearConstraint(const std::string& lagrange_key, size_t dim_lagrange) :
NonlinearFactor<Config>(zero(dim_lagrange), 1.0),
lagrange_key_(lagrange_key), p_(dim_lagrange) {}
/** returns the key used for the Lagrange multipliers */
std::string lagrangeKey() const { return lagrange_key_; }
/** returns the number of lagrange multipliers */
size_t nrConstraints() const { return p_; }
/** Print */
virtual void print(const std::string& s = "") const =0;
/** Check if two factors are equal */
virtual bool equals(const Factor<Config>& f, double tol=1e-9) const=0;
/** error function - returns the result of the constraint function */
virtual inline Vector error_vector(const Config& c) const=0;
/**
* Linearize using a real Config and a VectorConfig of Lagrange multipliers
* Returns the two separate Gaussian factors to solve
* @param config is the real Config of the real variables
* @param lagrange is the VectorConfig of lagrange multipliers
* @return a pair GaussianFactor (probabilistic) and GaussianFactor (constraint)
*/
virtual std::pair<GaussianFactor::shared_ptr, GaussianFactor::shared_ptr>
linearize(const Config& config, const VectorConfig& lagrange) const=0;
/**
* linearize with only Config, which is not currently implemented
* This will be implemented later for other constrained optimization
* algorithms
*/
virtual boost::shared_ptr<GaussianFactor> linearize(const Config& c) const {
throw std::invalid_argument("No current constraint linearization for a single Config!");
}
};
/**
* A unary constraint with arbitrary cost and gradient functions
*/
template <class Config>
class NonlinearConstraint1 : public NonlinearConstraint<Config> {
private:
/** calculates the constraint function of the current config
* If the value is zero, the constraint is not active
* @param config is a configuration of all the variables
* @param key is the id for the selected variable
* @return the cost for each of p constraints, arranged in a vector
*/
Vector (*g_)(const Config& config, const std::string& key);
/**
* Calculates the gradient of the constraint function
* returns a pxn matrix
* @param config to use for linearization
* @param key of selected variable
* @return the jacobian of the constraint in terms of key
*/
Matrix (*gradG_) (const Config& config, const std::string& key);
/** key for the constrained variable */
std::string key_;
public:
/**
* Basic constructor
* @param key is the identifier for the variable constrained
* @param gradG gives the gradient of the constraint function
* @param g is the constraint function
* @param dim_constraint is the size of the constraint (p)
* @param lagrange_key is the identifier for the lagrange multiplier
*/
NonlinearConstraint1(
const std::string& key,
Matrix (*gradG)(const Config& config, const std::string& key),
Vector (*g)(const Config& config, const std::string& key),
size_t dim_constraint,
const std::string& lagrange_key="");
/** Print */
void print(const std::string& s = "") const;
/** Check if two factors are equal */
bool equals(const Factor<Config>& f, double tol=1e-9) const;
/** error function - returns the result of the constraint function */
inline Vector error_vector(const Config& c) const {
return g_(c, key_);
}
/**
* Linearize using a real Config and a VectorConfig of Lagrange multipliers
* Returns the two separate Gaussian factors to solve
* @param config is the real Config of the real variables
* @param lagrange is the VectorConfig of lagrange multipliers
* @return a pair GaussianFactor (probabilistic) and GaussianFactor (constraint)
*/
std::pair<GaussianFactor::shared_ptr, GaussianFactor::shared_ptr>
linearize(const Config& config, const VectorConfig& lagrange) const;
};
/**
* A binary constraint with arbitrary cost and gradient functions
*/
template <class Config>
class NonlinearConstraint2 : public NonlinearConstraint<Config> {
private:
/** calculates the constraint function of the current config
* If the value is zero, the constraint is not active
* @param config is a configuration of all the variables
* @param key1 is the id for the first variable
* @param key2 is the id for the second variable
* @return the cost for each of p constraints, arranged in a vector
*/
Vector (*g_)(const Config& config, const std::string& key1, const std::string& key2);
/**
* Calculates the gradients of the constraint function in terms of
* the first and second variables
* returns a pxn matrix
* @param config to use for linearization
* @param key of selected variable
* @return the jacobian of the constraint in terms of key
*/
Matrix (*gradG1_) (const Config& config, const std::string& key);
Matrix (*gradG2_) (const Config& config, const std::string& key);
/** keys for the constrained variables */
std::string key1_;
std::string key2_;
public:
/**
* Basic constructor
* @param key is the identifier for the variable constrained
* @param gradG gives the gradient of the constraint function
* @param g is the constraint function
* @param dim_constraint is the size of the constraint (p)
* @param lagrange_key is the identifier for the lagrange multiplier
*/
NonlinearConstraint2(
const std::string& key1,
Matrix (*gradG1)(const Config& config, const std::string& key),
const std::string& key2,
Matrix (*gradG2)(const Config& config, const std::string& key),
Vector (*g)(const Config& config, const std::string& key1, const std::string& key2),
size_t dim_constraint,
const std::string& lagrange_key="");
/** Print */
void print(const std::string& s = "") const;
/** Check if two factors are equal */
bool equals(const Factor<Config>& f, double tol=1e-9) const;
/** error function - returns the result of the constraint function */
inline Vector error_vector(const Config& c) const {
return g_(c, key1_, key2_);
}
/**
* Linearize using a real Config and a VectorConfig of Lagrange multipliers
* Returns the two separate Gaussian factors to solve
* @param config is the real Config of the real variables
* @param lagrange is the VectorConfig of lagrange multipliers
* @return a pair GaussianFactor (probabilistic) and GaussianFactor (constraint)
*/
std::pair<GaussianFactor::shared_ptr, GaussianFactor::shared_ptr>
linearize(const Config& config, const VectorConfig& lagrange) const;
};
}