183 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			183 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file    BatchFixedLagSmoother.h
 | 
						|
 * @brief   An LM-based fixed-lag smoother.
 | 
						|
 *
 | 
						|
 * @author  Michael Kaess, Stephen Williams
 | 
						|
 * @date    Oct 14, 2012
 | 
						|
 */
 | 
						|
 | 
						|
// \callgraph
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include <gtsam_unstable/nonlinear/FixedLagSmoother.h>
 | 
						|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | 
						|
#include <queue>
 | 
						|
 | 
						|
namespace gtsam {
 | 
						|
 | 
						|
class GTSAM_UNSTABLE_EXPORT BatchFixedLagSmoother : public FixedLagSmoother {
 | 
						|
 | 
						|
public:
 | 
						|
 | 
						|
  /// Typedef for a shared pointer to an Incremental Fixed-Lag Smoother
 | 
						|
  typedef boost::shared_ptr<BatchFixedLagSmoother> shared_ptr;
 | 
						|
 | 
						|
  /** default constructor */
 | 
						|
  BatchFixedLagSmoother(double smootherLag = 0.0, const LevenbergMarquardtParams& parameters = LevenbergMarquardtParams(), bool enforceConsistency = true) :
 | 
						|
    FixedLagSmoother(smootherLag), parameters_(parameters), enforceConsistency_(enforceConsistency) { };
 | 
						|
 | 
						|
  /** destructor */
 | 
						|
  ~BatchFixedLagSmoother() override { };
 | 
						|
 | 
						|
  /** Print the factor for debugging and testing (implementing Testable) */
 | 
						|
  void print(const std::string& s = "BatchFixedLagSmoother:\n", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override;
 | 
						|
 | 
						|
  /** Check if two IncrementalFixedLagSmoother Objects are equal */
 | 
						|
  bool equals(const FixedLagSmoother& rhs, double tol = 1e-9) const override;
 | 
						|
 | 
						|
  /** Add new factors, updating the solution and relinearizing as needed. */
 | 
						|
  Result update(const NonlinearFactorGraph& newFactors = NonlinearFactorGraph(),
 | 
						|
                const Values& newTheta = Values(),
 | 
						|
                const KeyTimestampMap& timestamps = KeyTimestampMap(),
 | 
						|
                const FactorIndices& factorsToRemove = FactorIndices()) override;
 | 
						|
 | 
						|
  /** Compute an estimate from the incomplete linear delta computed during the last update.
 | 
						|
   * This delta is incomplete because it was not updated below wildfire_threshold.  If only
 | 
						|
   * a single variable is needed, it is faster to call calculateEstimate(const KEY&).
 | 
						|
   */
 | 
						|
  Values calculateEstimate() const override {
 | 
						|
    return theta_.retract(delta_);
 | 
						|
  }
 | 
						|
 | 
						|
  /** Compute an estimate for a single variable using its incomplete linear delta computed
 | 
						|
   * during the last update.  This is faster than calling the no-argument version of
 | 
						|
   * calculateEstimate, which operates on all variables.
 | 
						|
   * @param key
 | 
						|
   * @return
 | 
						|
   */
 | 
						|
  template<class VALUE>
 | 
						|
  VALUE calculateEstimate(Key key) const {
 | 
						|
    const Vector delta = delta_.at(key);
 | 
						|
    return traits<VALUE>::Retract(theta_.at<VALUE>(key), delta);
 | 
						|
  }
 | 
						|
 | 
						|
  /** read the current set of optimizer parameters */
 | 
						|
  const LevenbergMarquardtParams& params() const {
 | 
						|
    return parameters_;
 | 
						|
  }
 | 
						|
 | 
						|
  /** update the current set of optimizer parameters */
 | 
						|
  LevenbergMarquardtParams& params() {
 | 
						|
    return parameters_;
 | 
						|
  }
 | 
						|
 | 
						|
  /** Access the current set of factors */
 | 
						|
  const NonlinearFactorGraph& getFactors() const {
 | 
						|
    return factors_;
 | 
						|
  }
 | 
						|
 | 
						|
  /** Access the current linearization point */
 | 
						|
  const Values& getLinearizationPoint() const {
 | 
						|
    return theta_;
 | 
						|
  }
 | 
						|
 | 
						|
  /** Access the current ordering */
 | 
						|
  const Ordering& getOrdering() const {
 | 
						|
    return ordering_;
 | 
						|
  }
 | 
						|
 | 
						|
  /** Access the current set of deltas to the linearization point */
 | 
						|
  const VectorValues& getDelta() const {
 | 
						|
    return delta_;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Calculate marginal covariance on given variable
 | 
						|
  Matrix marginalCovariance(Key key) const;
 | 
						|
 | 
						|
  /// Marginalize specific keys from a linear graph.
 | 
						|
  /// Does not check whether keys actually exist in graph.
 | 
						|
  /// In that case will fail somewhere deep within elimination
 | 
						|
  static GaussianFactorGraph CalculateMarginalFactors(
 | 
						|
      const GaussianFactorGraph& graph, const KeyVector& keys,
 | 
						|
      const GaussianFactorGraph::Eliminate& eliminateFunction = EliminatePreferCholesky);
 | 
						|
 | 
						|
  /// Marginalize specific keys from a nonlinear graph, wrap in LinearContainers
 | 
						|
  static NonlinearFactorGraph CalculateMarginalFactors(
 | 
						|
      const NonlinearFactorGraph& graph, const Values& theta, const KeyVector& keys,
 | 
						|
      const GaussianFactorGraph::Eliminate& eliminateFunction = EliminatePreferCholesky);
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
  /** A typedef defining an Key-Factor mapping **/
 | 
						|
  typedef std::map<Key, std::set<Key> > FactorIndex;
 | 
						|
 | 
						|
  /** The L-M optimization parameters **/
 | 
						|
  LevenbergMarquardtParams parameters_;
 | 
						|
 | 
						|
  /** A flag indicating if the optimizer should enforce probabilistic consistency by maintaining the
 | 
						|
   * linearization point of all variables involved in linearized/marginal factors at the edge of the
 | 
						|
   * smoothing window. This idea is from ??? TODO: Look up paper reference **/
 | 
						|
  bool enforceConsistency_;
 | 
						|
 | 
						|
  /** The nonlinear factors **/
 | 
						|
  NonlinearFactorGraph factors_;
 | 
						|
 | 
						|
  /** The current linearization point **/
 | 
						|
  Values theta_;
 | 
						|
 | 
						|
  /** The set of keys involved in current linear factors. These keys should not be relinearized. **/
 | 
						|
  Values linearKeys_;
 | 
						|
 | 
						|
  /** The current ordering */
 | 
						|
  Ordering ordering_;
 | 
						|
 | 
						|
  /** The current set of linear deltas */
 | 
						|
  VectorValues delta_;
 | 
						|
 | 
						|
  /** The set of available factor graph slots. These occur because we are constantly deleting factors, leaving holes. **/
 | 
						|
  std::queue<size_t> availableSlots_;
 | 
						|
 | 
						|
  /** A cross-reference structure to allow efficient factor lookups by key **/
 | 
						|
  FactorIndex factorIndex_;
 | 
						|
 | 
						|
  /** Augment the list of factors with a set of new factors */
 | 
						|
  void insertFactors(const NonlinearFactorGraph& newFactors);
 | 
						|
 | 
						|
  /** Remove factors from the list of factors by slot index */
 | 
						|
  void removeFactors(const std::set<size_t>& deleteFactors);
 | 
						|
 | 
						|
  /** Erase any keys associated with timestamps before the provided time */
 | 
						|
  void eraseKeys(const KeyVector& keys);
 | 
						|
 | 
						|
  /** Use colamd to update into an efficient ordering */
 | 
						|
  void reorder(const KeyVector& marginalizeKeys = KeyVector());
 | 
						|
 | 
						|
  /** Optimize the current graph using a modified version of L-M */
 | 
						|
  Result optimize();
 | 
						|
 | 
						|
  /** Marginalize out selected variables */
 | 
						|
  void marginalize(const KeyVector& marginalizableKeys);
 | 
						|
 | 
						|
private:
 | 
						|
  /** Private methods for printing debug information */
 | 
						|
  static void PrintKeySet(const std::set<Key>& keys, const std::string& label);
 | 
						|
  static void PrintKeySet(const gtsam::KeySet& keys, const std::string& label);
 | 
						|
  static void PrintSymbolicFactor(const NonlinearFactor::shared_ptr& factor);
 | 
						|
  static void PrintSymbolicFactor(const GaussianFactor::shared_ptr& factor);
 | 
						|
  static void PrintSymbolicGraph(const NonlinearFactorGraph& graph, const std::string& label);
 | 
						|
  static void PrintSymbolicGraph(const GaussianFactorGraph& graph, const std::string& label);
 | 
						|
}; // BatchFixedLagSmoother
 | 
						|
 | 
						|
} /// namespace gtsam
 |