gtsam/gtsam/nonlinear/ExtendedKalmanFilter-inl.h

127 lines
4.9 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ExtendedKalmanFilter-inl.h
* @brief Class to perform generic Kalman Filtering using nonlinear factor graphs
* @author Stephen Williams
* @author Chris Beall
*/
#pragma once
#include <gtsam/nonlinear/ExtendedKalmanFilter.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianFactorGraph.h>
namespace gtsam {
/* ************************************************************************* */
template<class VALUE>
typename ExtendedKalmanFilter<VALUE>::T ExtendedKalmanFilter<VALUE>::solve_(
const GaussianFactorGraph& linearFactorGraph,
const Values& linearizationPoint, Key lastKey,
JacobianFactor::shared_ptr* newPrior)
{
// Compute the marginal on the last key
// Solve the linear factor graph, converting it into a linear Bayes Network
// P(x0,x1) = P(x0|x1)*P(x1)
const Ordering lastKeyAsOrdering{lastKey};
const GaussianConditional::shared_ptr marginal =
linearFactorGraph.marginalMultifrontalBayesNet(lastKeyAsOrdering)->front();
// Extract the current estimate of x1,P1
VectorValues result = marginal->solve(VectorValues());
const T& current = linearizationPoint.at<T>(lastKey);
T x = traits<T>::Retract(current, result[lastKey]);
// Create a Jacobian Factor from the root node of the produced Bayes Net.
// This will act as a prior for the next iteration.
// The linearization point of this prior must be moved to the new estimate of x,
// and the key/index needs to be reset to 0, the first key in the next iteration.
assert(marginal->nrFrontals() == 1);
assert(marginal->nrParents() == 0);
*newPrior = std::make_shared<JacobianFactor>(
marginal->keys().front(),
marginal->getA(marginal->begin()),
marginal->getb() - marginal->getA(marginal->begin()) * result[lastKey],
marginal->get_model());
return x;
}
/* ************************************************************************* */
template <class VALUE>
ExtendedKalmanFilter<VALUE>::ExtendedKalmanFilter(
Key key_initial, T x_initial, noiseModel::Gaussian::shared_ptr P_initial)
: x_(x_initial) // Set the initial linearization point
{
// Create a Jacobian Prior Factor directly P_initial.
// Since x0 is set to the provided mean, the b vector in the prior will be zero
// TODO(Frank): is there a reason why noiseModel is not simply P_initial?
int n = traits<T>::GetDimension(x_initial);
priorFactor_ = JacobianFactor::shared_ptr(
new JacobianFactor(key_initial, P_initial->R(), Vector::Zero(n),
noiseModel::Unit::Create(n)));
}
/* ************************************************************************* */
template<class VALUE>
typename ExtendedKalmanFilter<VALUE>::T ExtendedKalmanFilter<VALUE>::predict(
const NoiseModelFactor& motionFactor) {
const auto keys = motionFactor.keys();
// Create a Gaussian Factor Graph
GaussianFactorGraph linearFactorGraph;
// Add in previous posterior as prior on the first state
linearFactorGraph.push_back(priorFactor_);
// Linearize motion model and add it to the Kalman Filter graph
Values linearizationPoint;
linearizationPoint.insert(keys[0], x_);
linearizationPoint.insert(keys[1], x_); // TODO should this really be x_ ?
linearFactorGraph.push_back(motionFactor.linearize(linearizationPoint));
// Solve the factor graph and update the current state estimate
// and the posterior for the next iteration.
x_ = solve_(linearFactorGraph, linearizationPoint, keys[1], &priorFactor_);
return x_;
}
/* ************************************************************************* */
template<class VALUE>
typename ExtendedKalmanFilter<VALUE>::T ExtendedKalmanFilter<VALUE>::update(
const NoiseModelFactor& measurementFactor) {
const auto keys = measurementFactor.keys();
// Create a Gaussian Factor Graph
GaussianFactorGraph linearFactorGraph;
// Add in the prior on the first state
linearFactorGraph.push_back(priorFactor_);
// Linearize measurement factor and add it to the Kalman Filter graph
Values linearizationPoint;
linearizationPoint.insert(keys[0], x_);
linearFactorGraph.push_back(measurementFactor.linearize(linearizationPoint));
// Solve the factor graph and update the current state estimate
// and the prior factor for the next iteration
x_ = solve_(linearFactorGraph, linearizationPoint, keys[0], &priorFactor_);
return x_;
}
} // namespace gtsam