gtsam/cpp/NonlinearOptimizer.h

181 lines
5.2 KiB
C++

/**
* NonlinearOptimizer.h
* @brief: Encapsulates nonlinear optimization state
* @Author: Frank Dellaert
* Created on: Sep 7, 2009
*/
#ifndef NONLINEAROPTIMIZER_H_
#define NONLINEAROPTIMIZER_H_
#include <boost/shared_ptr.hpp>
#include "NonlinearFactorGraph.h"
#include "VectorConfig.h"
namespace gtsam {
class NullOptimizerWriter {
public:
NullOptimizerWriter(double error) {}
virtual void write(double error) {}
};
/**
* The class NonlinearOptimizer encapsulates an optimization state.
* Typically it is instantiated with a NonlinearFactorGraph and an initial config
* and then one of the optimization routines is called. These recursively iterate
* until convergence. All methods are functional and return a new state.
*
* The class is parameterized by the Graph type $G$, Config class type $T$,
* linear system class $L$ and the non linear solver type $S$.
* the config type is in order to be able to optimize over non-vector configurations as well.
* To use in code, include <gtsam/NonlinearOptimizer-inl.h> in your cpp file
* (the trick in http://www.ddj.com/cpp/184403420 did not work).
*
* For example, in a 2D case, $G$ can be Pose2Graph, $T$ can be Pose2Config,
* $L$ can be GaussianFactorGraph and $S$ can be Factorization<Pose2Graph, Pose2Config>.
* The solver class has two main functions: linear and optimize. The first one linear the
* nonlinear cost function around the current estimate, and the second one optimize the
* linearized system using various methods.
*/
template<class G, class T, class L = GaussianFactorGraph, class S = Factorization<G, T>, class Writer = NullOptimizerWriter>
class NonlinearOptimizer {
public:
// For performance reasons in recursion, we store configs in a shared_ptr
typedef boost::shared_ptr<const T> shared_config;
typedef boost::shared_ptr<const G> shared_graph;
typedef boost::shared_ptr<const S> shared_solver;
typedef const S solver;
enum verbosityLevel {
SILENT,
ERROR,
LAMBDA,
CONFIG,
DELTA,
TRYLAMBDA,
TRYCONFIG,
TRYDELTA,
LINEAR,
DAMPED
};
private:
// keep a reference to const version of the graph
// These normally do not change
const shared_graph graph_;
// keep a configuration and its error
// These typically change once per iteration (in a functional way)
const shared_config config_;
const double error_;
// keep current lambda for use within LM only
// TODO: red flag, should we have an LM class ?
const double lambda_;
// the linear system solver
const shared_solver solver_;
// Recursively try to do tempered Gauss-Newton steps until we succeed
NonlinearOptimizer try_lambda(const L& linear,
verbosityLevel verbosity, double factor) const;
public:
/**
* Constructor
*/
NonlinearOptimizer(shared_graph graph, shared_config config, shared_solver solver,
double lambda = 1e-5);
/**
* Copy constructor
*/
NonlinearOptimizer(const NonlinearOptimizer<G, T, L, S> &optimizer) :
graph_(optimizer.graph_), config_(optimizer.config_),
error_(optimizer.error_), lambda_(optimizer.lambda_), solver_(optimizer.solver_) {}
/**
* Return current error
*/
double error() const {
return error_;
}
/**
* Return current lambda
*/
double lambda() const {
return lambda_;
}
/**
* Return the config
*/
shared_config config() const{
return config_;
}
/**
* linearize and optimize
* This returns an VectorConfig, i.e., vectors in tangent space of T
*/
VectorConfig linearizeAndOptimizeForDelta() const;
/**
* Do one Gauss-Newton iteration and return next state
*/
NonlinearOptimizer iterate(verbosityLevel verbosity = SILENT) const;
/**
* Optimize a solution for a non linear factor graph
* @param relativeTreshold
* @param absoluteTreshold
* @param verbosity Integer specifying how much output to provide
*/
NonlinearOptimizer
gaussNewton(double relativeThreshold, double absoluteThreshold,
verbosityLevel verbosity = SILENT, int maxIterations = 100) const;
/**
* One iteration of Levenberg Marquardt
*/
NonlinearOptimizer iterateLM(verbosityLevel verbosity = SILENT,
double lambdaFactor = 10) const;
/**
* Optimize using Levenberg-Marquardt. Really Levenberg's
* algorithm at this moment, as we just add I*\lambda to Hessian
* H'H. The probabilistic explanation is very simple: every
* variable gets an extra Gaussian prior that biases staying at
* current value, with variance 1/lambda. This is done very easily
* (but perhaps wastefully) by adding a prior factor for each of
* the variables, after linearization.
*
* @param relativeThreshold
* @param absoluteThreshold
* @param verbosity Integer specifying how much output to provide
* @param lambdaFactor Factor by which to decrease/increase lambda
*/
NonlinearOptimizer
levenbergMarquardt(double relativeThreshold, double absoluteThreshold,
verbosityLevel verbosity = SILENT, int maxIterations = 100,
double lambdaFactor = 10) const;
};
/**
* Check convergence
*/
bool check_convergence (double relativeErrorTreshold,
double absoluteErrorTreshold,
double currentError, double newError,
int verbosity);
} // gtsam
#endif /* NONLINEAROPTIMIZER_H_ */