gtsam/gtsam_unstable/slam/tests/testSmartStereoProjectionFa...

1460 lines
60 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testSmartStereoProjectionFactorPP.cpp
* @brief Unit tests for SmartStereoProjectionFactorPP Class
* @author Luca Carlone
* @date March 2021
*/
#include <gtsam/slam/tests/smartFactorScenarios.h>
#include <gtsam_unstable/slam/SmartStereoProjectionFactorPP.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/slam/PoseTranslationPrior.h>
#include <gtsam/slam/ProjectionFactor.h>
#include <gtsam/slam/StereoFactor.h>
#include <boost/assign/std/vector.hpp>
#include <CppUnitLite/TestHarness.h>
#include <iostream>
using namespace std;
using namespace boost::assign;
using namespace gtsam;
// make a realistic calibration matrix
static double b = 1;
static Cal3_S2Stereo::shared_ptr K(new Cal3_S2Stereo(fov, w, h, b));
static Cal3_S2Stereo::shared_ptr K2(
new Cal3_S2Stereo(1500, 1200, 0, 640, 480, b));
static SmartStereoProjectionParams params;
// static bool manageDegeneracy = true;
// Create a noise model for the pixel error
static SharedNoiseModel model(noiseModel::Isotropic::Sigma(3, 0.1));
// Convenience for named keys
using symbol_shorthand::X;
using symbol_shorthand::L;
// tests data
static Symbol x1('X', 1);
static Symbol x2('X', 2);
static Symbol x3('X', 3);
static Symbol body_P_sensor1_sym('P', 0);
static Key poseKey1(x1);
static StereoPoint2 measurement1(323.0, 300.0, 240.0); //potentially use more reasonable measurement value?
static Pose3 body_P_sensor1(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2),
Point3(0.25, -0.10, 1.0));
static double missing_uR = std::numeric_limits<double>::quiet_NaN();
vector<StereoPoint2> stereo_projectToMultipleCameras(const StereoCamera& cam1,
const StereoCamera& cam2, const StereoCamera& cam3, Point3 landmark) {
vector<StereoPoint2> measurements_cam;
StereoPoint2 cam1_uv1 = cam1.project(landmark);
StereoPoint2 cam2_uv1 = cam2.project(landmark);
StereoPoint2 cam3_uv1 = cam3.project(landmark);
measurements_cam.push_back(cam1_uv1);
measurements_cam.push_back(cam2_uv1);
measurements_cam.push_back(cam3_uv1);
return measurements_cam;
}
LevenbergMarquardtParams lm_params;
/* ************************************************************************* *
TEST( SmartStereoProjectionFactorPP, params) {
SmartStereoProjectionParams p;
// check default values and "get"
EXPECT(p.getLinearizationMode() == HESSIAN);
EXPECT(p.getDegeneracyMode() == IGNORE_DEGENERACY);
EXPECT_DOUBLES_EQUAL(p.getRetriangulationThreshold(), 1e-5, 1e-9);
EXPECT(p.getVerboseCheirality() == false);
EXPECT(p.getThrowCheirality() == false);
// check "set"
p.setLinearizationMode(JACOBIAN_SVD);
p.setDegeneracyMode(ZERO_ON_DEGENERACY);
p.setRankTolerance(100);
p.setEnableEPI(true);
p.setLandmarkDistanceThreshold(200);
p.setDynamicOutlierRejectionThreshold(3);
p.setRetriangulationThreshold(1e-2);
EXPECT(p.getLinearizationMode() == JACOBIAN_SVD);
EXPECT(p.getDegeneracyMode() == ZERO_ON_DEGENERACY);
EXPECT_DOUBLES_EQUAL(p.getTriangulationParameters().rankTolerance, 100, 1e-5);
EXPECT(p.getTriangulationParameters().enableEPI == true);
EXPECT_DOUBLES_EQUAL(p.getTriangulationParameters().landmarkDistanceThreshold, 200, 1e-5);
EXPECT_DOUBLES_EQUAL(p.getTriangulationParameters().dynamicOutlierRejectionThreshold, 3, 1e-5);
EXPECT_DOUBLES_EQUAL(p.getRetriangulationThreshold(), 1e-2, 1e-5);
}
/* ************************************************************************* */
TEST( SmartStereoProjectionFactorPP, Constructor) {
SmartStereoProjectionFactorPP::shared_ptr factor1(new SmartStereoProjectionFactorPP(model));
}
/* ************************************************************************* *
TEST( SmartStereoProjectionFactorPP, Constructor2) {
SmartStereoProjectionFactorPP factor1(model, params);
}
/* ************************************************************************* *
TEST( SmartStereoProjectionFactorPP, Constructor3) {
SmartStereoProjectionFactorPP::shared_ptr factor1(new SmartStereoProjectionFactorPP(model));
factor1->add(measurement1, poseKey1, K);
}
/* ************************************************************************* *
TEST( SmartStereoProjectionFactorPP, Constructor4) {
SmartStereoProjectionFactorPP factor1(model, params);
factor1.add(measurement1, poseKey1, K);
}
/* ************************************************************************* *
TEST( SmartStereoProjectionFactorPP, Equals ) {
SmartStereoProjectionFactorPP::shared_ptr factor1(new SmartStereoProjectionFactorPP(model));
factor1->add(measurement1, poseKey1, K);
SmartStereoProjectionFactorPP::shared_ptr factor2(new SmartStereoProjectionFactorPP(model));
factor2->add(measurement1, poseKey1, K);
CHECK(assert_equal(*factor1, *factor2));
}
/* *************************************************************************
TEST_UNSAFE( SmartStereoProjectionFactorPP, noiseless ) {
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 level_pose = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2),
Point3(0, 0, 1));
StereoCamera level_camera(level_pose, K2);
// create second camera 1 meter to the right of first camera
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
StereoCamera level_camera_right(level_pose_right, K2);
// landmark ~5 meters infront of camera
Point3 landmark(5, 0.5, 1.2);
// 1. Project two landmarks into two cameras and triangulate
StereoPoint2 level_uv = level_camera.project(landmark);
StereoPoint2 level_uv_right = level_camera_right.project(landmark);
Values values;
values.insert(x1, level_pose);
values.insert(x2, level_pose_right);
SmartStereoProjectionFactorPP factor1(model);
factor1.add(level_uv, x1, K2);
factor1.add(level_uv_right, x2, K2);
double actualError = factor1.error(values);
double expectedError = 0.0;
EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
SmartStereoProjectionFactorPP::Cameras cameras = factor1.cameras(values);
double actualError2 = factor1.totalReprojectionError(cameras);
EXPECT_DOUBLES_EQUAL(expectedError, actualError2, 1e-7);
// test vector of errors
//Vector actual = factor1.unwhitenedError(values);
//EXPECT(assert_equal(zero(4),actual,1e-8));
}
///* *************************************************************************/
//TEST( SmartProjectionPoseFactor, noiselessWithMissingMeasurements ) {
//
// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
// Pose3 level_pose = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2),
// Point3(0, 0, 1));
// StereoCamera level_camera(level_pose, K2);
//
// // create second camera 1 meter to the right of first camera
// Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
// StereoCamera level_camera_right(level_pose_right, K2);
//
// // landmark ~5 meters in front of camera
// Point3 landmark(5, 0.5, 1.2);
//
// // 1. Project two landmarks into two cameras and triangulate
// StereoPoint2 level_uv = level_camera.project(landmark);
// StereoPoint2 level_uv_right = level_camera_right.project(landmark);
// StereoPoint2 level_uv_right_missing(level_uv_right.uL(),missing_uR,level_uv_right.v());
//
// Values values;
// values.insert(x1, level_pose);
// values.insert(x2, level_pose_right);
//
// SmartStereoProjectionFactorPP factor1(model);
// factor1.add(level_uv, x1, K2);
// factor1.add(level_uv_right_missing, x2, K2);
//
// double actualError = factor1.error(values);
// double expectedError = 0.0;
// EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
//
// // TEST TRIANGULATION WITH MISSING VALUES: i) right pixel of second camera is missing:
// SmartStereoProjectionFactorPP::Cameras cameras = factor1.cameras(values);
// double actualError2 = factor1.totalReprojectionError(cameras);
// EXPECT_DOUBLES_EQUAL(expectedError, actualError2, 1e-7);
//
// CameraSet<StereoCamera> cams;
// cams += level_camera;
// cams += level_camera_right;
// TriangulationResult result = factor1.triangulateSafe(cams);
// CHECK(result);
// EXPECT(assert_equal(landmark, *result, 1e-7));
//
// // TEST TRIANGULATION WITH MISSING VALUES: ii) right pixels of both cameras are missing:
// SmartStereoProjectionFactorPP factor2(model);
// StereoPoint2 level_uv_missing(level_uv.uL(),missing_uR,level_uv.v());
// factor2.add(level_uv_missing, x1, K2);
// factor2.add(level_uv_right_missing, x2, K2);
// result = factor2.triangulateSafe(cams);
// CHECK(result);
// EXPECT(assert_equal(landmark, *result, 1e-7));
//}
//
///* *************************************************************************/
//TEST( SmartStereoProjectionFactorPP, noisy ) {
// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
// Pose3 level_pose = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2),
// Point3(0, 0, 1));
// StereoCamera level_camera(level_pose, K2);
//
// // create second camera 1 meter to the right of first camera
// Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
// StereoCamera level_camera_right(level_pose_right, K2);
//
// // landmark ~5 meters infront of camera
// Point3 landmark(5, 0.5, 1.2);
//
// // 1. Project two landmarks into two cameras and triangulate
// StereoPoint2 pixelError(0.2, 0.2, 0);
// StereoPoint2 level_uv = level_camera.project(landmark) + pixelError;
// StereoPoint2 level_uv_right = level_camera_right.project(landmark);
//
// Values values;
// values.insert(x1, level_pose);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 10, 0., -M_PI / 10),
// Point3(0.5, 0.1, 0.3));
// values.insert(x2, level_pose_right.compose(noise_pose));
//
// SmartStereoProjectionFactorPP::shared_ptr factor1(new SmartStereoProjectionFactorPP(model));
// factor1->add(level_uv, x1, K);
// factor1->add(level_uv_right, x2, K);
//
// double actualError1 = factor1->error(values);
//
// SmartStereoProjectionFactorPP::shared_ptr factor2(new SmartStereoProjectionFactorPP(model));
// vector<StereoPoint2> measurements;
// measurements.push_back(level_uv);
// measurements.push_back(level_uv_right);
//
// vector<boost::shared_ptr<Cal3_S2Stereo> > Ks; ///< shared pointer to calibration object (one for each camera)
// Ks.push_back(K);
// Ks.push_back(K);
//
// KeyVector views;
// views.push_back(x1);
// views.push_back(x2);
//
// factor2->add(measurements, views, Ks);
//
// double actualError2 = factor2->error(values);
//
// DOUBLES_EQUAL(actualError1, actualError2, 1e-7);
//}
//
///* *************************************************************************/
//TEST( SmartStereoProjectionFactorPP, 3poses_smart_projection_factor ) {
//
// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
// Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
// StereoCamera cam1(pose1, K2);
//
// // create second camera 1 meter to the right of first camera
// Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
// StereoCamera cam2(pose2, K2);
//
// // create third camera 1 meter above the first camera
// Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
// StereoCamera cam3(pose3, K2);
//
// // three landmarks ~5 meters infront of camera
// Point3 landmark1(5, 0.5, 1.2);
// Point3 landmark2(5, -0.5, 1.2);
// Point3 landmark3(3, 0, 3.0);
//
// // 1. Project three landmarks into three cameras and triangulate
// vector<StereoPoint2> measurements_l1 = stereo_projectToMultipleCameras(cam1,
// cam2, cam3, landmark1);
// vector<StereoPoint2> measurements_l2 = stereo_projectToMultipleCameras(cam1,
// cam2, cam3, landmark2);
// vector<StereoPoint2> measurements_l3 = stereo_projectToMultipleCameras(cam1,
// cam2, cam3, landmark3);
//
// KeyVector views;
// views.push_back(x1);
// views.push_back(x2);
// views.push_back(x3);
//
// SmartStereoProjectionParams smart_params;
// smart_params.triangulation.enableEPI = true;
// SmartStereoProjectionFactorPP::shared_ptr smartFactor1(new SmartStereoProjectionFactorPP(model, smart_params));
// smartFactor1->add(measurements_l1, views, K2);
//
// SmartStereoProjectionFactorPP::shared_ptr smartFactor2(new SmartStereoProjectionFactorPP(model, smart_params));
// smartFactor2->add(measurements_l2, views, K2);
//
// SmartStereoProjectionFactorPP::shared_ptr smartFactor3(new SmartStereoProjectionFactorPP(model, smart_params));
// smartFactor3->add(measurements_l3, views, K2);
//
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
//
// NonlinearFactorGraph graph;
// graph.push_back(smartFactor1);
// graph.push_back(smartFactor2);
// graph.push_back(smartFactor3);
// graph.addPrior(x1, pose1, noisePrior);
// graph.addPrior(x2, pose2, noisePrior);
//
// // Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
// Point3(0.1, 0.1, 0.1)); // smaller noise
// Values values;
// values.insert(x1, pose1);
// values.insert(x2, pose2);
// // initialize third pose with some noise, we expect it to move back to original pose3
// values.insert(x3, pose3 * noise_pose);
// EXPECT(
// assert_equal(
// Pose3(
// Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
// -0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
// Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
//
// // cout << std::setprecision(10) << "\n----SmartStereoFactor graph initial error: " << graph.error(values) << endl;
// EXPECT_DOUBLES_EQUAL(833953.92789459578, graph.error(values), 1e-7); // initial error
//
// // get triangulated landmarks from smart factors
// Point3 landmark1_smart = *smartFactor1->point();
// Point3 landmark2_smart = *smartFactor2->point();
// Point3 landmark3_smart = *smartFactor3->point();
//
// Values result;
// gttic_(SmartStereoProjectionFactorPP);
// LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
// result = optimizer.optimize();
// gttoc_(SmartStereoProjectionFactorPP);
// tictoc_finishedIteration_();
//
// EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-5);
//
//// cout << std::setprecision(10) << "SmartStereoFactor graph optimized error: " << graph.error(result) << endl;
//
// GaussianFactorGraph::shared_ptr GFG = graph.linearize(result);
// VectorValues delta = GFG->optimize();
// VectorValues expected = VectorValues::Zero(delta);
// EXPECT(assert_equal(expected, delta, 1e-6));
//
// // result.print("results of 3 camera, 3 landmark optimization \n");
// EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
//
// /* ***************************************************************
// * Same problem with regular Stereo factors, expect same error!
// * ****************************************************************/
//
//// landmark1_smart.print("landmark1_smart");
//// landmark2_smart.print("landmark2_smart");
//// landmark3_smart.print("landmark3_smart");
//
// // add landmarks to values
// values.insert(L(1), landmark1_smart);
// values.insert(L(2), landmark2_smart);
// values.insert(L(3), landmark3_smart);
//
// // add factors
// NonlinearFactorGraph graph2;
//
// graph2.addPrior(x1, pose1, noisePrior);
// graph2.addPrior(x2, pose2, noisePrior);
//
// typedef GenericStereoFactor<Pose3, Point3> ProjectionFactor;
//
// bool verboseCheirality = true;
//
// graph2.push_back(ProjectionFactor(measurements_l1[0], model, x1, L(1), K2, false, verboseCheirality));
// graph2.push_back(ProjectionFactor(measurements_l1[1], model, x2, L(1), K2, false, verboseCheirality));
// graph2.push_back(ProjectionFactor(measurements_l1[2], model, x3, L(1), K2, false, verboseCheirality));
//
// graph2.push_back(ProjectionFactor(measurements_l2[0], model, x1, L(2), K2, false, verboseCheirality));
// graph2.push_back(ProjectionFactor(measurements_l2[1], model, x2, L(2), K2, false, verboseCheirality));
// graph2.push_back(ProjectionFactor(measurements_l2[2], model, x3, L(2), K2, false, verboseCheirality));
//
// graph2.push_back(ProjectionFactor(measurements_l3[0], model, x1, L(3), K2, false, verboseCheirality));
// graph2.push_back(ProjectionFactor(measurements_l3[1], model, x2, L(3), K2, false, verboseCheirality));
// graph2.push_back(ProjectionFactor(measurements_l3[2], model, x3, L(3), K2, false, verboseCheirality));
//
//// cout << std::setprecision(10) << "\n----StereoFactor graph initial error: " << graph2.error(values) << endl;
// EXPECT_DOUBLES_EQUAL(833953.92789459578, graph2.error(values), 1e-7);
//
// LevenbergMarquardtOptimizer optimizer2(graph2, values, lm_params);
// Values result2 = optimizer2.optimize();
// EXPECT_DOUBLES_EQUAL(0, graph2.error(result2), 1e-5);
//
//// cout << std::setprecision(10) << "StereoFactor graph optimized error: " << graph2.error(result2) << endl;
//
//}
///* *************************************************************************/
//TEST( SmartStereoProjectionFactorPP, body_P_sensor ) {
//
// // camera has some displacement
// Pose3 body_P_sensor = Pose3(Rot3::Ypr(-0.01, 0., -0.05), Point3(0.1, 0, 0.1));
// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
// Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
// StereoCamera cam1(pose1.compose(body_P_sensor), K2);
//
// // create second camera 1 meter to the right of first camera
// Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
// StereoCamera cam2(pose2.compose(body_P_sensor), K2);
//
// // create third camera 1 meter above the first camera
// Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
// StereoCamera cam3(pose3.compose(body_P_sensor), K2);
//
// // three landmarks ~5 meters infront of camera
// Point3 landmark1(5, 0.5, 1.2);
// Point3 landmark2(5, -0.5, 1.2);
// Point3 landmark3(3, 0, 3.0);
//
// // 1. Project three landmarks into three cameras and triangulate
// vector<StereoPoint2> measurements_l1 = stereo_projectToMultipleCameras(cam1,
// cam2, cam3, landmark1);
// vector<StereoPoint2> measurements_l2 = stereo_projectToMultipleCameras(cam1,
// cam2, cam3, landmark2);
// vector<StereoPoint2> measurements_l3 = stereo_projectToMultipleCameras(cam1,
// cam2, cam3, landmark3);
//
// KeyVector views;
// views.push_back(x1);
// views.push_back(x2);
// views.push_back(x3);
//
// SmartStereoProjectionParams smart_params;
// smart_params.triangulation.enableEPI = true;
// SmartStereoProjectionFactorPP::shared_ptr smartFactor1(new SmartStereoProjectionFactorPP(model, smart_params, body_P_sensor));
// smartFactor1->add(measurements_l1, views, K2);
//
// SmartStereoProjectionFactorPP::shared_ptr smartFactor2(new SmartStereoProjectionFactorPP(model, smart_params, body_P_sensor));
// smartFactor2->add(measurements_l2, views, K2);
//
// SmartStereoProjectionFactorPP::shared_ptr smartFactor3(new SmartStereoProjectionFactorPP(model, smart_params, body_P_sensor));
// smartFactor3->add(measurements_l3, views, K2);
//
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
//
// NonlinearFactorGraph graph;
// graph.push_back(smartFactor1);
// graph.push_back(smartFactor2);
// graph.push_back(smartFactor3);
// graph.addPrior(x1, pose1, noisePrior);
// graph.addPrior(x2, pose2, noisePrior);
//
// // Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
// Point3(0.1, 0.1, 0.1)); // smaller noise
// Values values;
// values.insert(x1, pose1);
// values.insert(x2, pose2);
// // initialize third pose with some noise, we expect it to move back to original pose3
// values.insert(x3, pose3 * noise_pose);
// EXPECT(
// assert_equal(
// Pose3(
// Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
// -0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
// Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
//
// // cout << std::setprecision(10) << "\n----SmartStereoFactor graph initial error: " << graph.error(values) << endl;
// EXPECT_DOUBLES_EQUAL(953392.32838422502, graph.error(values), 1e-7); // initial error
//
// Values result;
// gttic_(SmartStereoProjectionFactorPP);
// LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
// result = optimizer.optimize();
// gttoc_(SmartStereoProjectionFactorPP);
// tictoc_finishedIteration_();
//
// EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-5);
//
// // result.print("results of 3 camera, 3 landmark optimization \n");
// EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
//}
///* *************************************************************************/
//TEST( SmartStereoProjectionFactorPP, body_P_sensor_monocular ){
// // make a realistic calibration matrix
// double fov = 60; // degrees
// size_t w=640,h=480;
//
// Cal3_S2::shared_ptr K(new Cal3_S2(fov,w,h));
//
// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
// Pose3 cameraPose1 = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); // body poses
// Pose3 cameraPose2 = cameraPose1 * Pose3(Rot3(), Point3(1,0,0));
// Pose3 cameraPose3 = cameraPose1 * Pose3(Rot3(), Point3(0,-1,0));
//
// PinholeCamera<Cal3_S2> cam1(cameraPose1, *K); // with camera poses
// PinholeCamera<Cal3_S2> cam2(cameraPose2, *K);
// PinholeCamera<Cal3_S2> cam3(cameraPose3, *K);
//
// // create arbitrary body_Pose_sensor (transforms from sensor to body)
// Pose3 sensor_to_body = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(1, 1, 1)); // Pose3(); //
//
// // These are the poses we want to estimate, from camera measurements
// Pose3 bodyPose1 = cameraPose1.compose(sensor_to_body.inverse());
// Pose3 bodyPose2 = cameraPose2.compose(sensor_to_body.inverse());
// Pose3 bodyPose3 = cameraPose3.compose(sensor_to_body.inverse());
//
// // three landmarks ~5 meters infront of camera
// Point3 landmark1(5, 0.5, 1.2);
// Point3 landmark2(5, -0.5, 1.2);
// Point3 landmark3(5, 0, 3.0);
//
// Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
//
// // Project three landmarks into three cameras
// projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
// projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
// projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
//
// // Create smart factors
// KeyVector views;
// views.push_back(x1);
// views.push_back(x2);
// views.push_back(x3);
//
// // convert measurement to (degenerate) stereoPoint2 (with right pixel being NaN)
// vector<StereoPoint2> measurements_cam1_stereo, measurements_cam2_stereo, measurements_cam3_stereo;
// for(size_t k=0; k<measurements_cam1.size();k++)
// measurements_cam1_stereo.push_back(StereoPoint2(measurements_cam1[k].x() , missing_uR , measurements_cam1[k].y()));
//
// for(size_t k=0; k<measurements_cam2.size();k++)
// measurements_cam2_stereo.push_back(StereoPoint2(measurements_cam2[k].x() , missing_uR , measurements_cam2[k].y()));
//
// for(size_t k=0; k<measurements_cam3.size();k++)
// measurements_cam3_stereo.push_back(StereoPoint2(measurements_cam3[k].x() , missing_uR , measurements_cam3[k].y()));
//
// SmartStereoProjectionParams params;
// params.setRankTolerance(1.0);
// params.setDegeneracyMode(gtsam::IGNORE_DEGENERACY);
// params.setEnableEPI(false);
//
// Cal3_S2Stereo::shared_ptr Kmono(new Cal3_S2Stereo(fov,w,h,b));
// SmartStereoProjectionFactorPP smartFactor1(model, params, sensor_to_body);
// smartFactor1.add(measurements_cam1_stereo, views, Kmono);
//
// SmartStereoProjectionFactorPP smartFactor2(model, params, sensor_to_body);
// smartFactor2.add(measurements_cam2_stereo, views, Kmono);
//
// SmartStereoProjectionFactorPP smartFactor3(model, params, sensor_to_body);
// smartFactor3.add(measurements_cam3_stereo, views, Kmono);
//
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
//
// // Put all factors in factor graph, adding priors
// NonlinearFactorGraph graph;
// graph.push_back(smartFactor1);
// graph.push_back(smartFactor2);
// graph.push_back(smartFactor3);
// graph.addPrior(x1, bodyPose1, noisePrior);
// graph.addPrior(x2, bodyPose2, noisePrior);
//
// // Check errors at ground truth poses
// Values gtValues;
// gtValues.insert(x1, bodyPose1);
// gtValues.insert(x2, bodyPose2);
// gtValues.insert(x3, bodyPose3);
// double actualError = graph.error(gtValues);
// double expectedError = 0.0;
// DOUBLES_EQUAL(expectedError, actualError, 1e-7)
//
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1));
// Values values;
// values.insert(x1, bodyPose1);
// values.insert(x2, bodyPose2);
// // initialize third pose with some noise, we expect it to move back to original pose3
// values.insert(x3, bodyPose3*noise_pose);
//
// LevenbergMarquardtParams lmParams;
// Values result;
// LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
// result = optimizer.optimize();
// EXPECT(assert_equal(bodyPose3,result.at<Pose3>(x3)));
//}
///* *************************************************************************/
//TEST( SmartStereoProjectionFactorPP, jacobianSVD ) {
//
// KeyVector views;
// views.push_back(x1);
// views.push_back(x2);
// views.push_back(x3);
//
// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
// Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
// StereoCamera cam1(pose1, K);
// // create second camera 1 meter to the right of first camera
// Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
// StereoCamera cam2(pose2, K);
// // create third camera 1 meter above the first camera
// Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
// StereoCamera cam3(pose3, K);
//
// // three landmarks ~5 meters infront of camera
// Point3 landmark1(5, 0.5, 1.2);
// Point3 landmark2(5, -0.5, 1.2);
// Point3 landmark3(3, 0, 3.0);
//
// // 1. Project three landmarks into three cameras and triangulate
// vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
// cam2, cam3, landmark1);
// vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1,
// cam2, cam3, landmark2);
// vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1,
// cam2, cam3, landmark3);
//
// SmartStereoProjectionParams params;
// params.setLinearizationMode(JACOBIAN_SVD);
//
// SmartStereoProjectionFactorPP::shared_ptr smartFactor1( new SmartStereoProjectionFactorPP(model, params));
// smartFactor1->add(measurements_cam1, views, K);
//
// SmartStereoProjectionFactorPP::shared_ptr smartFactor2(new SmartStereoProjectionFactorPP(model, params));
// smartFactor2->add(measurements_cam2, views, K);
//
// SmartStereoProjectionFactorPP::shared_ptr smartFactor3(new SmartStereoProjectionFactorPP(model, params));
// smartFactor3->add(measurements_cam3, views, K);
//
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
//
// NonlinearFactorGraph graph;
// graph.push_back(smartFactor1);
// graph.push_back(smartFactor2);
// graph.push_back(smartFactor3);
// graph.addPrior(x1, pose1, noisePrior);
// graph.addPrior(x2, pose2, noisePrior);
//
// // Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
// Point3(0.1, 0.1, 0.1)); // smaller noise
// Values values;
// values.insert(x1, pose1);
// values.insert(x2, pose2);
// values.insert(x3, pose3 * noise_pose);
//
// Values result;
// LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
// result = optimizer.optimize();
// EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
//}
//
///* *************************************************************************/
//TEST( SmartStereoProjectionFactorPP, jacobianSVDwithMissingValues ) {
//
// KeyVector views;
// views.push_back(x1);
// views.push_back(x2);
// views.push_back(x3);
//
// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
// Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
// StereoCamera cam1(pose1, K);
// // create second camera 1 meter to the right of first camera
// Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
// StereoCamera cam2(pose2, K);
// // create third camera 1 meter above the first camera
// Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
// StereoCamera cam3(pose3, K);
//
// // three landmarks ~5 meters infront of camera
// Point3 landmark1(5, 0.5, 1.2);
// Point3 landmark2(5, -0.5, 1.2);
// Point3 landmark3(3, 0, 3.0);
//
// // 1. Project three landmarks into three cameras and triangulate
// vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
// cam2, cam3, landmark1);
// vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1,
// cam2, cam3, landmark2);
// vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1,
// cam2, cam3, landmark3);
//
// // DELETE SOME MEASUREMENTS
// StereoPoint2 sp = measurements_cam1[1];
// measurements_cam1[1] = StereoPoint2(sp.uL(), missing_uR, sp.v());
// sp = measurements_cam2[2];
// measurements_cam2[2] = StereoPoint2(sp.uL(), missing_uR, sp.v());
//
// SmartStereoProjectionParams params;
// params.setLinearizationMode(JACOBIAN_SVD);
//
// SmartStereoProjectionFactorPP::shared_ptr smartFactor1( new SmartStereoProjectionFactorPP(model, params));
// smartFactor1->add(measurements_cam1, views, K);
//
// SmartStereoProjectionFactorPP::shared_ptr smartFactor2(new SmartStereoProjectionFactorPP(model, params));
// smartFactor2->add(measurements_cam2, views, K);
//
// SmartStereoProjectionFactorPP::shared_ptr smartFactor3(new SmartStereoProjectionFactorPP(model, params));
// smartFactor3->add(measurements_cam3, views, K);
//
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
//
// NonlinearFactorGraph graph;
// graph.push_back(smartFactor1);
// graph.push_back(smartFactor2);
// graph.push_back(smartFactor3);
// graph.addPrior(x1, pose1, noisePrior);
// graph.addPrior(x2, pose2, noisePrior);
//
// // Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
// Point3(0.1, 0.1, 0.1)); // smaller noise
// Values values;
// values.insert(x1, pose1);
// values.insert(x2, pose2);
// values.insert(x3, pose3 * noise_pose);
//
// Values result;
// LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
// result = optimizer.optimize();
// EXPECT(assert_equal(pose3, result.at<Pose3>(x3),1e-7));
//}
//
///* *************************************************************************/
//TEST( SmartStereoProjectionFactorPP, landmarkDistance ) {
//
//// double excludeLandmarksFutherThanDist = 2;
//
// KeyVector views;
// views.push_back(x1);
// views.push_back(x2);
// views.push_back(x3);
//
// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
// Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
// StereoCamera cam1(pose1, K);
// // create second camera 1 meter to the right of first camera
// Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
// StereoCamera cam2(pose2, K);
// // create third camera 1 meter above the first camera
// Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
// StereoCamera cam3(pose3, K);
//
// // three landmarks ~5 meters infront of camera
// Point3 landmark1(5, 0.5, 1.2);
// Point3 landmark2(5, -0.5, 1.2);
// Point3 landmark3(3, 0, 3.0);
//
// // 1. Project three landmarks into three cameras and triangulate
// vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
// cam2, cam3, landmark1);
// vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1,
// cam2, cam3, landmark2);
// vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1,
// cam2, cam3, landmark3);
//
// SmartStereoProjectionParams params;
// params.setLinearizationMode(JACOBIAN_SVD);
// params.setLandmarkDistanceThreshold(2);
//
// SmartStereoProjectionFactorPP::shared_ptr smartFactor1(new SmartStereoProjectionFactorPP(model, params));
// smartFactor1->add(measurements_cam1, views, K);
//
// SmartStereoProjectionFactorPP::shared_ptr smartFactor2(new SmartStereoProjectionFactorPP(model, params));
// smartFactor2->add(measurements_cam2, views, K);
//
// SmartStereoProjectionFactorPP::shared_ptr smartFactor3(new SmartStereoProjectionFactorPP(model, params));
// smartFactor3->add(measurements_cam3, views, K);
//
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
//
// NonlinearFactorGraph graph;
// graph.push_back(smartFactor1);
// graph.push_back(smartFactor2);
// graph.push_back(smartFactor3);
// graph.addPrior(x1, pose1, noisePrior);
// graph.addPrior(x2, pose2, noisePrior);
//
// // Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
// Point3(0.1, 0.1, 0.1)); // smaller noise
// Values values;
// values.insert(x1, pose1);
// values.insert(x2, pose2);
// values.insert(x3, pose3 * noise_pose);
//
// // All factors are disabled and pose should remain where it is
// Values result;
// LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
// result = optimizer.optimize();
// EXPECT(assert_equal(values.at<Pose3>(x3), result.at<Pose3>(x3)));
//}
//
///* *************************************************************************/
//TEST( SmartStereoProjectionFactorPP, dynamicOutlierRejection ) {
//
// KeyVector views;
// views.push_back(x1);
// views.push_back(x2);
// views.push_back(x3);
//
// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
// Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
// StereoCamera cam1(pose1, K);
// // create second camera 1 meter to the right of first camera
// Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
// StereoCamera cam2(pose2, K);
// // create third camera 1 meter above the first camera
// Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
// StereoCamera cam3(pose3, K);
//
// // three landmarks ~5 meters infront of camera
// Point3 landmark1(5, 0.5, 1.2);
// Point3 landmark2(5, -0.5, 1.2);
// Point3 landmark3(3, 0, 3.0);
// Point3 landmark4(5, -0.5, 1);
//
// // 1. Project four landmarks into three cameras and triangulate
// vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
// cam2, cam3, landmark1);
// vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1,
// cam2, cam3, landmark2);
// vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1,
// cam2, cam3, landmark3);
// vector<StereoPoint2> measurements_cam4 = stereo_projectToMultipleCameras(cam1,
// cam2, cam3, landmark4);
//
// measurements_cam4.at(0) = measurements_cam4.at(0) + StereoPoint2(10, 10, 1); // add outlier
//
// SmartStereoProjectionParams params;
// params.setLinearizationMode(JACOBIAN_SVD);
// params.setDynamicOutlierRejectionThreshold(1);
//
//
// SmartStereoProjectionFactorPP::shared_ptr smartFactor1(new SmartStereoProjectionFactorPP(model, params));
// smartFactor1->add(measurements_cam1, views, K);
//
// SmartStereoProjectionFactorPP::shared_ptr smartFactor2(new SmartStereoProjectionFactorPP(model, params));
// smartFactor2->add(measurements_cam2, views, K);
//
// SmartStereoProjectionFactorPP::shared_ptr smartFactor3(new SmartStereoProjectionFactorPP(model, params));
// smartFactor3->add(measurements_cam3, views, K);
//
// SmartStereoProjectionFactorPP::shared_ptr smartFactor4(new SmartStereoProjectionFactorPP(model, params));
// smartFactor4->add(measurements_cam4, views, K);
//
// // same as factor 4, but dynamic outlier rejection is off
// SmartStereoProjectionFactorPP::shared_ptr smartFactor4b(new SmartStereoProjectionFactorPP(model));
// smartFactor4b->add(measurements_cam4, views, K);
//
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
//
// NonlinearFactorGraph graph;
// graph.push_back(smartFactor1);
// graph.push_back(smartFactor2);
// graph.push_back(smartFactor3);
// graph.push_back(smartFactor4);
// graph.addPrior(x1, pose1, noisePrior);
// graph.addPrior(x2, pose2, noisePrior);
//
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
// Point3(0.1, 0.1, 0.1)); // smaller noise
// Values values;
// values.insert(x1, pose1);
// values.insert(x2, pose2);
// values.insert(x3, pose3);
//
// EXPECT_DOUBLES_EQUAL(0, smartFactor1->error(values), 1e-9);
// EXPECT_DOUBLES_EQUAL(0, smartFactor2->error(values), 1e-9);
// EXPECT_DOUBLES_EQUAL(0, smartFactor3->error(values), 1e-9);
// // zero error due to dynamic outlier rejection
// EXPECT_DOUBLES_EQUAL(0, smartFactor4->error(values), 1e-9);
//
// // dynamic outlier rejection is off
// EXPECT_DOUBLES_EQUAL(6147.3947317473921, smartFactor4b->error(values), 1e-9);
//
// // Factors 1-3 should have valid point, factor 4 should not
// EXPECT(smartFactor1->point());
// EXPECT(smartFactor2->point());
// EXPECT(smartFactor3->point());
// EXPECT(smartFactor4->point().outlier());
// EXPECT(smartFactor4b->point());
//
// // Factor 4 is disabled, pose 3 stays put
// Values result;
// LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
// result = optimizer.optimize();
// EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
//}
////
/////* *************************************************************************/
////TEST( SmartStereoProjectionFactorPP, jacobianQ ){
////
//// KeyVector views;
//// views.push_back(x1);
//// views.push_back(x2);
//// views.push_back(x3);
////
//// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
//// Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), Point3(0,0,1));
//// StereoCamera cam1(pose1, K);
//// // create second camera 1 meter to the right of first camera
//// Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
//// StereoCamera cam2(pose2, K);
//// // create third camera 1 meter above the first camera
//// Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0));
//// StereoCamera cam3(pose3, K);
////
//// // three landmarks ~5 meters infront of camera
//// Point3 landmark1(5, 0.5, 1.2);
//// Point3 landmark2(5, -0.5, 1.2);
//// Point3 landmark3(3, 0, 3.0);
////
//// vector<StereoPoint2> measurements_cam1, measurements_cam2, measurements_cam3;
////
//// // 1. Project three landmarks into three cameras and triangulate
//// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
//// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
//// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
////
//// SmartStereoProjectionFactorPP::shared_ptr smartFactor1(new SmartStereoProjectionFactorPP(1, -1, false, false, JACOBIAN_Q));
//// smartFactor1->add(measurements_cam1, views, model, K);
////
//// SmartStereoProjectionFactorPP::shared_ptr smartFactor2(new SmartStereoProjectionFactorPP(1, -1, false, false, JACOBIAN_Q));
//// smartFactor2->add(measurements_cam2, views, model, K);
////
//// SmartStereoProjectionFactorPP::shared_ptr smartFactor3(new SmartStereoProjectionFactorPP(1, -1, false, false, JACOBIAN_Q));
//// smartFactor3->add(measurements_cam3, views, model, K);
////
//// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
////
//// NonlinearFactorGraph graph;
//// graph.push_back(smartFactor1);
//// graph.push_back(smartFactor2);
//// graph.push_back(smartFactor3);
//// graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
//// graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
////
//// // Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
//// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/100, 0., -M_PI/100), Point3(0.1,0.1,0.1)); // smaller noise
//// Values values;
//// values.insert(x1, pose1);
//// values.insert(x2, pose2);
//// values.insert(x3, pose3*noise_pose);
////
////// Values result;
//// LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
//// result = optimizer.optimize();
//// EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
////}
////
/////* *************************************************************************/
////TEST( SmartStereoProjectionFactorPP, 3poses_projection_factor ){
////
//// KeyVector views;
//// views.push_back(x1);
//// views.push_back(x2);
//// views.push_back(x3);
////
//// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
//// Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), Point3(0,0,1));
//// StereoCamera cam1(pose1, K2);
////
//// // create second camera 1 meter to the right of first camera
//// Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
//// StereoCamera cam2(pose2, K2);
////
//// // create third camera 1 meter above the first camera
//// Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0));
//// StereoCamera cam3(pose3, K2);
////
//// // three landmarks ~5 meters infront of camera
//// Point3 landmark1(5, 0.5, 1.2);
//// Point3 landmark2(5, -0.5, 1.2);
//// Point3 landmark3(3, 0, 3.0);
////
//// typedef GenericStereoFactor<Pose3, Point3> ProjectionFactor;
//// NonlinearFactorGraph graph;
////
//// // 1. Project three landmarks into three cameras and triangulate
//// graph.push_back(ProjectionFactor(cam1.project(landmark1), model, x1, L(1), K2));
//// graph.push_back(ProjectionFactor(cam2.project(landmark1), model, x2, L(1), K2));
//// graph.push_back(ProjectionFactor(cam3.project(landmark1), model, x3, L(1), K2));
////
//// graph.push_back(ProjectionFactor(cam1.project(landmark2), model, x1, L(2), K2));
//// graph.push_back(ProjectionFactor(cam2.project(landmark2), model, x2, L(2), K2));
//// graph.push_back(ProjectionFactor(cam3.project(landmark2), model, x3, L(2), K2));
////
//// graph.push_back(ProjectionFactor(cam1.project(landmark3), model, x1, L(3), K2));
//// graph.push_back(ProjectionFactor(cam2.project(landmark3), model, x2, L(3), K2));
//// graph.push_back(ProjectionFactor(cam3.project(landmark3), model, x3, L(3), K2));
////
//// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
//// graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
//// graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
////
//// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3));
//// Values values;
//// values.insert(x1, pose1);
//// values.insert(x2, pose2);
//// values.insert(x3, pose3* noise_pose);
//// values.insert(L(1), landmark1);
//// values.insert(L(2), landmark2);
//// values.insert(L(3), landmark3);
////
//// LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
//// Values result = optimizer.optimize();
////
//// EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
////}
////
///* *************************************************************************/
//TEST( SmartStereoProjectionFactorPP, CheckHessian) {
//
// KeyVector views;
// views.push_back(x1);
// views.push_back(x2);
// views.push_back(x3);
//
// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
// Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
// StereoCamera cam1(pose1, K);
//
// // create second camera
// Pose3 pose2 = pose1 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
// StereoCamera cam2(pose2, K);
//
// // create third camera
// Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
// StereoCamera cam3(pose3, K);
//
// // three landmarks ~5 meters infront of camera
// Point3 landmark1(5, 0.5, 1.2);
// Point3 landmark2(5, -0.5, 1.2);
// Point3 landmark3(3, 0, 3.0);
//
// // Project three landmarks into three cameras and triangulate
// vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
// cam2, cam3, landmark1);
// vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1,
// cam2, cam3, landmark2);
// vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1,
// cam2, cam3, landmark3);
//
// SmartStereoProjectionParams params;
// params.setRankTolerance(10);
//
// SmartStereoProjectionFactorPP::shared_ptr smartFactor1(new SmartStereoProjectionFactorPP(model, params));
// smartFactor1->add(measurements_cam1, views, K);
//
// SmartStereoProjectionFactorPP::shared_ptr smartFactor2(new SmartStereoProjectionFactorPP(model, params));
// smartFactor2->add(measurements_cam2, views, K);
//
// SmartStereoProjectionFactorPP::shared_ptr smartFactor3(new SmartStereoProjectionFactorPP(model, params));
// smartFactor3->add(measurements_cam3, views, K);
//
// // Create graph to optimize
// NonlinearFactorGraph graph;
// graph.push_back(smartFactor1);
// graph.push_back(smartFactor2);
// graph.push_back(smartFactor3);
//
// Values values;
// values.insert(x1, pose1);
// values.insert(x2, pose2);
// // initialize third pose with some noise, we expect it to move back to original pose3
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
// Point3(0.1, 0.1, 0.1)); // smaller noise
// values.insert(x3, pose3 * noise_pose);
//
// // TODO: next line throws Cheirality exception on Mac
// boost::shared_ptr<GaussianFactor> hessianFactor1 = smartFactor1->linearize(
// values);
// boost::shared_ptr<GaussianFactor> hessianFactor2 = smartFactor2->linearize(
// values);
// boost::shared_ptr<GaussianFactor> hessianFactor3 = smartFactor3->linearize(
// values);
//
// Matrix CumulativeInformation = hessianFactor1->information()
// + hessianFactor2->information() + hessianFactor3->information();
//
// boost::shared_ptr<GaussianFactorGraph> GaussianGraph = graph.linearize(
// values);
// Matrix GraphInformation = GaussianGraph->hessian().first;
//
// // Check Hessian
// EXPECT(assert_equal(GraphInformation, CumulativeInformation, 1e-8));
//
// Matrix AugInformationMatrix = hessianFactor1->augmentedInformation()
// + hessianFactor2->augmentedInformation()
// + hessianFactor3->augmentedInformation();
//
// // Check Information vector
// Vector InfoVector = AugInformationMatrix.block(0, 18, 18, 1); // 18x18 Hessian + information vector
//
// // Check Hessian
// EXPECT(assert_equal(InfoVector, GaussianGraph->hessian().second, 1e-8));
//}
////
/////* *************************************************************************/
////TEST( SmartStereoProjectionFactorPP, 3poses_2land_rotation_only_smart_projection_factor ){
////
//// KeyVector views;
//// views.push_back(x1);
//// views.push_back(x2);
//// views.push_back(x3);
////
//// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
//// Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), Point3(0,0,1));
//// StereoCamera cam1(pose1, K2);
////
//// // create second camera 1 meter to the right of first camera
//// Pose3 pose2 = pose1 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
//// StereoCamera cam2(pose2, K2);
////
//// // create third camera 1 meter above the first camera
//// Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
//// StereoCamera cam3(pose3, K2);
////
//// // three landmarks ~5 meters infront of camera
//// Point3 landmark1(5, 0.5, 1.2);
//// Point3 landmark2(5, -0.5, 1.2);
////
//// vector<StereoPoint2> measurements_cam1, measurements_cam2, measurements_cam3;
////
//// // 1. Project three landmarks into three cameras and triangulate
//// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
//// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
////
//// double rankTol = 50;
//// SmartStereoProjectionFactorPP::shared_ptr smartFactor1(new SmartStereoProjectionFactorPP(rankTol, linThreshold, manageDegeneracy));
//// smartFactor1->add(measurements_cam1, views, model, K2);
////
//// SmartStereoProjectionFactorPP::shared_ptr smartFactor2(new SmartStereoProjectionFactorPP(rankTol, linThreshold, manageDegeneracy));
//// smartFactor2->add(measurements_cam2, views, model, K2);
////
//// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
//// const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3, 0.10);
//// Point3 positionPrior = Point3(0,0,1);
////
//// NonlinearFactorGraph graph;
//// graph.push_back(smartFactor1);
//// graph.push_back(smartFactor2);
//// graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
//// graph.push_back(PoseTranslationPrior<Pose3>(x2, positionPrior, noisePriorTranslation));
//// graph.push_back(PoseTranslationPrior<Pose3>(x3, positionPrior, noisePriorTranslation));
////
//// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.1,0.1,0.1)); // smaller noise
//// Values values;
//// values.insert(x1, pose1);
//// values.insert(x2, pose2*noise_pose);
//// // initialize third pose with some noise, we expect it to move back to original pose3
//// values.insert(x3, pose3*noise_pose*noise_pose);
////
//// Values result;
//// gttic_(SmartStereoProjectionFactorPP);
//// LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
//// result = optimizer.optimize();
//// gttoc_(SmartStereoProjectionFactorPP);
//// tictoc_finishedIteration_();
////
//// // result.print("results of 3 camera, 3 landmark optimization \n");
//// // EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
////}
////
/////* *************************************************************************/
////TEST( SmartStereoProjectionFactorPP, 3poses_rotation_only_smart_projection_factor ){
////
//// KeyVector views;
//// views.push_back(x1);
//// views.push_back(x2);
//// views.push_back(x3);
////
//// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
//// Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), Point3(0,0,1));
//// StereoCamera cam1(pose1, K);
////
//// // create second camera 1 meter to the right of first camera
//// Pose3 pose2 = pose1 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
//// StereoCamera cam2(pose2, K);
////
//// // create third camera 1 meter above the first camera
//// Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
//// StereoCamera cam3(pose3, K);
////
//// // three landmarks ~5 meters infront of camera
//// Point3 landmark1(5, 0.5, 1.2);
//// Point3 landmark2(5, -0.5, 1.2);
//// Point3 landmark3(3, 0, 3.0);
////
//// vector<StereoPoint2> measurements_cam1, measurements_cam2, measurements_cam3;
////
//// // 1. Project three landmarks into three cameras and triangulate
//// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
//// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
//// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
////
//// double rankTol = 10;
////
//// SmartStereoProjectionFactorPP::shared_ptr smartFactor1(new SmartStereoProjectionFactorPP(rankTol, linThreshold, manageDegeneracy));
//// smartFactor1->add(measurements_cam1, views, model, K);
////
//// SmartStereoProjectionFactorPP::shared_ptr smartFactor2(new SmartStereoProjectionFactorPP(rankTol, linThreshold, manageDegeneracy));
//// smartFactor2->add(measurements_cam2, views, model, K);
////
//// SmartStereoProjectionFactorPP::shared_ptr smartFactor3(new SmartStereoProjectionFactorPP(rankTol, linThreshold, manageDegeneracy));
//// smartFactor3->add(measurements_cam3, views, model, K);
////
//// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
//// const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3, 0.10);
//// Point3 positionPrior = Point3(0,0,1);
////
//// NonlinearFactorGraph graph;
//// graph.push_back(smartFactor1);
//// graph.push_back(smartFactor2);
//// graph.push_back(smartFactor3);
//// graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
//// graph.push_back(PoseTranslationPrior<Pose3>(x2, positionPrior, noisePriorTranslation));
//// graph.push_back(PoseTranslationPrior<Pose3>(x3, positionPrior, noisePriorTranslation));
////
//// // Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
//// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/100, 0., -M_PI/100), Point3(0.1,0.1,0.1)); // smaller noise
//// Values values;
//// values.insert(x1, pose1);
//// values.insert(x2, pose2);
//// // initialize third pose with some noise, we expect it to move back to original pose3
//// values.insert(x3, pose3*noise_pose);
////
//// Values result;
//// gttic_(SmartStereoProjectionFactorPP);
//// LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
//// result = optimizer.optimize();
//// gttoc_(SmartStereoProjectionFactorPP);
//// tictoc_finishedIteration_();
////
//// // result.print("results of 3 camera, 3 landmark optimization \n");
//// // EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
////}
////
/////* *************************************************************************/
////TEST( SmartStereoProjectionFactorPP, Hessian ){
////
//// KeyVector views;
//// views.push_back(x1);
//// views.push_back(x2);
////
//// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
//// Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), Point3(0,0,1));
//// StereoCamera cam1(pose1, K2);
////
//// // create second camera 1 meter to the right of first camera
//// Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
//// StereoCamera cam2(pose2, K2);
////
//// // three landmarks ~5 meters infront of camera
//// Point3 landmark1(5, 0.5, 1.2);
////
//// // 1. Project three landmarks into three cameras and triangulate
//// StereoPoint2 cam1_uv1 = cam1.project(landmark1);
//// StereoPoint2 cam2_uv1 = cam2.project(landmark1);
//// vector<StereoPoint2> measurements_cam1;
//// measurements_cam1.push_back(cam1_uv1);
//// measurements_cam1.push_back(cam2_uv1);
////
//// SmartStereoProjectionFactorPP::shared_ptr smartFactor1(new SmartStereoProjectionFactorPP());
//// smartFactor1->add(measurements_cam1,views, model, K2);
////
//// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3));
//// Values values;
//// values.insert(x1, pose1);
//// values.insert(x2, pose2);
////
//// boost::shared_ptr<GaussianFactor> hessianFactor = smartFactor1->linearize(values);
////
//// // compute triangulation from linearization point
//// // compute reprojection errors (sum squared)
//// // compare with hessianFactor.info(): the bottom right element is the squared sum of the reprojection errors (normalized by the covariance)
//// // check that it is correctly scaled when using noiseProjection = [1/4 0; 0 1/4]
////}
////
//
///* *************************************************************************/
//TEST( SmartStereoProjectionFactorPP, HessianWithRotation ) {
// KeyVector views;
// views.push_back(x1);
// views.push_back(x2);
// views.push_back(x3);
//
// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
// Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
// StereoCamera cam1(pose1, K);
//
// // create second camera 1 meter to the right of first camera
// Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
// StereoCamera cam2(pose2, K);
//
// // create third camera 1 meter above the first camera
// Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
// StereoCamera cam3(pose3, K);
//
// Point3 landmark1(5, 0.5, 1.2);
//
// vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
// cam2, cam3, landmark1);
//
// SmartStereoProjectionFactorPP::shared_ptr smartFactorInstance(new SmartStereoProjectionFactorPP(model));
// smartFactorInstance->add(measurements_cam1, views, K);
//
// Values values;
// values.insert(x1, pose1);
// values.insert(x2, pose2);
// values.insert(x3, pose3);
//
// boost::shared_ptr<GaussianFactor> hessianFactor =
// smartFactorInstance->linearize(values);
// // hessianFactor->print("Hessian factor \n");
//
// Pose3 poseDrift = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
//
// Values rotValues;
// rotValues.insert(x1, poseDrift.compose(pose1));
// rotValues.insert(x2, poseDrift.compose(pose2));
// rotValues.insert(x3, poseDrift.compose(pose3));
//
// boost::shared_ptr<GaussianFactor> hessianFactorRot =
// smartFactorInstance->linearize(rotValues);
// // hessianFactorRot->print("Hessian factor \n");
//
// // Hessian is invariant to rotations in the nondegenerate case
// EXPECT(
// assert_equal(hessianFactor->information(),
// hessianFactorRot->information(), 1e-7));
//
// Pose3 poseDrift2 = Pose3(Rot3::Ypr(-M_PI / 2, -M_PI / 3, -M_PI / 2),
// Point3(10, -4, 5));
//
// Values tranValues;
// tranValues.insert(x1, poseDrift2.compose(pose1));
// tranValues.insert(x2, poseDrift2.compose(pose2));
// tranValues.insert(x3, poseDrift2.compose(pose3));
//
// boost::shared_ptr<GaussianFactor> hessianFactorRotTran =
// smartFactorInstance->linearize(tranValues);
//
// // Hessian is invariant to rotations and translations in the nondegenerate case
// EXPECT(
// assert_equal(hessianFactor->information(),
// hessianFactorRotTran->information(), 1e-6));
//}
//
///* *************************************************************************/
//TEST( SmartStereoProjectionFactorPP, HessianWithRotationNonDegenerate ) {
//
// KeyVector views;
// views.push_back(x1);
// views.push_back(x2);
// views.push_back(x3);
//
// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
// Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
// StereoCamera cam1(pose1, K2);
//
// // Second and third cameras in same place, which is a degenerate configuration
// Pose3 pose2 = pose1;
// Pose3 pose3 = pose1;
// StereoCamera cam2(pose2, K2);
// StereoCamera cam3(pose3, K2);
//
// Point3 landmark1(5, 0.5, 1.2);
//
// vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
// cam2, cam3, landmark1);
//
// SmartStereoProjectionFactorPP::shared_ptr smartFactor(new SmartStereoProjectionFactorPP(model));
// smartFactor->add(measurements_cam1, views, K2);
//
// Values values;
// values.insert(x1, pose1);
// values.insert(x2, pose2);
// values.insert(x3, pose3);
//
// boost::shared_ptr<GaussianFactor> hessianFactor = smartFactor->linearize(
// values);
//
// // check that it is non degenerate
// EXPECT(smartFactor->isValid());
//
// Pose3 poseDrift = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
//
// Values rotValues;
// rotValues.insert(x1, poseDrift.compose(pose1));
// rotValues.insert(x2, poseDrift.compose(pose2));
// rotValues.insert(x3, poseDrift.compose(pose3));
//
// boost::shared_ptr<GaussianFactor> hessianFactorRot = smartFactor->linearize(
// rotValues);
//
// // check that it is non degenerate
// EXPECT(smartFactor->isValid());
//
// // Hessian is invariant to rotations in the nondegenerate case
// EXPECT(
// assert_equal(hessianFactor->information(),
// hessianFactorRot->information(), 1e-6));
//
// Pose3 poseDrift2 = Pose3(Rot3::Ypr(-M_PI / 2, -M_PI / 3, -M_PI / 2),
// Point3(10, -4, 5));
//
// Values tranValues;
// tranValues.insert(x1, poseDrift2.compose(pose1));
// tranValues.insert(x2, poseDrift2.compose(pose2));
// tranValues.insert(x3, poseDrift2.compose(pose3));
//
// boost::shared_ptr<GaussianFactor> hessianFactorRotTran =
// smartFactor->linearize(tranValues);
//
// // Hessian is invariant to rotations and translations in the degenerate case
// EXPECT(
// assert_equal(hessianFactor->information(),
//#ifdef GTSAM_USE_EIGEN_MKL
// hessianFactorRotTran->information(), 1e-5));
//#else
// hessianFactorRotTran->information(), 1e-6));
//#endif
//}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */