gtsam/gtsam/slam/JacobianFactorSVD.h

73 lines
2.1 KiB
C++

/*
* @file JacobianFactorSVD.h
* @date Oct 27, 2013
* @uthor Frank Dellaert
*/
#pragma once
#include <gtsam/linear/RegularJacobianFactor.h>
namespace gtsam {
/**
* JacobianFactor for Schur complement
*/
template<size_t D, size_t ZDim>
class JacobianFactorSVD: public RegularJacobianFactor<D> {
typedef RegularJacobianFactor<D> Base;
typedef Eigen::Matrix<double, ZDim, D> MatrixZD; // e.g 2 x 6 with Z=Point2
typedef std::pair<Key, Matrix> KeyMatrix;
public:
/// Default constructor
JacobianFactorSVD() {
}
/// Empty constructor with keys
JacobianFactorSVD(const FastVector<Key>& keys, //
const SharedDiagonal& model = SharedDiagonal()) :
Base() {
Matrix zeroMatrix = Matrix::Zero(0, D);
Vector zeroVector = Vector::Zero(0);
std::vector<KeyMatrix> QF;
QF.reserve(keys.size());
BOOST_FOREACH(const Key& key, keys)
QF.push_back(KeyMatrix(key, zeroMatrix));
JacobianFactor::fillTerms(QF, zeroVector, model);
}
/**
* @brief Constructor
* Takes the CameraSet derivatives (as ZDim*D blocks of block-diagonal F)
* and a reduced point derivative, Enull
* and creates a reduced-rank Jacobian factor on the CameraSet
*
* @Fblocks:
*/
JacobianFactorSVD(const FastVector<Key>& keys,
const std::vector<MatrixZD>& Fblocks, const Matrix& Enull,
const Vector& b, //
const SharedDiagonal& model = SharedDiagonal()) :
Base() {
size_t numKeys = Enull.rows() / ZDim;
size_t m2 = ZDim * numKeys - 3;
// PLAIN NULL SPACE TRICK
// Matrix Q = Enull * Enull.transpose();
// BOOST_FOREACH(const KeyMatrixZD& it, Fblocks)
// QF.push_back(KeyMatrix(it.first, Q.block(0, 2 * j++, m2, 2) * it.second));
// JacobianFactor factor(QF, Q * b);
std::vector<KeyMatrix> QF;
QF.reserve(numKeys);
for (size_t k = 0; k < Fblocks.size(); ++k) {
Key key = keys[k];
QF.push_back(
KeyMatrix(key,
(Enull.transpose()).block(0, ZDim * k, m2, ZDim) * Fblocks[k]));
}
JacobianFactor::fillTerms(QF, -Enull.transpose() * b, model);
}
};
}