gtsam/gtsam/geometry/triangulation.h

499 lines
17 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file triangulation.h
* @brief Functions for triangulation
* @date July 31, 2013
* @author Chris Beall
*/
#pragma once
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/geometry/CameraSet.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/slam/TriangulationFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/inference/Symbol.h>
namespace gtsam {
/// Exception thrown by triangulateDLT when SVD returns rank < 3
class GTSAM_EXPORT TriangulationUnderconstrainedException: public std::runtime_error {
public:
TriangulationUnderconstrainedException() :
std::runtime_error("Triangulation Underconstrained Exception.") {
}
};
/// Exception thrown by triangulateDLT when landmark is behind one or more of the cameras
class GTSAM_EXPORT TriangulationCheiralityException: public std::runtime_error {
public:
TriangulationCheiralityException() :
std::runtime_error(
"Triangulation Cheirality Exception: The resulting landmark is behind one or more cameras.") {
}
};
/**
* DLT triangulation: See Hartley and Zisserman, 2nd Ed., page 312
* @param projection_matrices Projection matrices (K*P^-1)
* @param measurements 2D measurements
* @param rank_tol SVD rank tolerance
* @return Triangulated point, in homogeneous coordinates
*/
GTSAM_EXPORT Vector4 triangulateHomogeneousDLT(
const std::vector<Matrix34, Eigen::aligned_allocator<Matrix34>>& projection_matrices,
const Point2Vector& measurements, double rank_tol = 1e-9);
/**
* DLT triangulation: See Hartley and Zisserman, 2nd Ed., page 312
* @param projection_matrices Projection matrices (K*P^-1)
* @param measurements 2D measurements
* @param rank_tol SVD rank tolerance
* @return Triangulated Point3
*/
GTSAM_EXPORT Point3 triangulateDLT(
const std::vector<Matrix34, Eigen::aligned_allocator<Matrix34>>& projection_matrices,
const Point2Vector& measurements,
double rank_tol = 1e-9);
/**
* Create a factor graph with projection factors from poses and one calibration
* @param poses Camera poses
* @param sharedCal shared pointer to single calibration object (monocular only!)
* @param measurements 2D measurements
* @param landmarkKey to refer to landmark
* @param initialEstimate
* @return graph and initial values
*/
template<class CALIBRATION>
std::pair<NonlinearFactorGraph, Values> triangulationGraph(
const std::vector<Pose3>& poses, boost::shared_ptr<CALIBRATION> sharedCal,
const Point2Vector& measurements, Key landmarkKey,
const Point3& initialEstimate) {
Values values;
values.insert(landmarkKey, initialEstimate); // Initial landmark value
NonlinearFactorGraph graph;
static SharedNoiseModel unit2(noiseModel::Unit::Create(2));
static SharedNoiseModel prior_model(noiseModel::Isotropic::Sigma(6, 1e-6));
for (size_t i = 0; i < measurements.size(); i++) {
const Pose3& pose_i = poses[i];
typedef PinholePose<CALIBRATION> Camera;
Camera camera_i(pose_i, sharedCal);
graph.emplace_shared<TriangulationFactor<Camera> > //
(camera_i, measurements[i], unit2, landmarkKey);
}
return std::make_pair(graph, values);
}
/**
* Create a factor graph with projection factors from pinhole cameras
* (each camera has a pose and calibration)
* @param cameras pinhole cameras (monocular or stereo)
* @param measurements 2D measurements
* @param landmarkKey to refer to landmark
* @param initialEstimate
* @return graph and initial values
*/
template<class CAMERA>
std::pair<NonlinearFactorGraph, Values> triangulationGraph(
const CameraSet<CAMERA>& cameras,
const typename CAMERA::MeasurementVector& measurements, Key landmarkKey,
const Point3& initialEstimate) {
Values values;
values.insert(landmarkKey, initialEstimate); // Initial landmark value
NonlinearFactorGraph graph;
static SharedNoiseModel unit(noiseModel::Unit::Create(
traits<typename CAMERA::Measurement>::dimension));
for (size_t i = 0; i < measurements.size(); i++) {
const CAMERA& camera_i = cameras[i];
graph.emplace_shared<TriangulationFactor<CAMERA> > //
(camera_i, measurements[i], unit, landmarkKey);
}
return std::make_pair(graph, values);
}
/**
* Optimize for triangulation
* @param graph nonlinear factors for projection
* @param values initial values
* @param landmarkKey to refer to landmark
* @return refined Point3
*/
GTSAM_EXPORT Point3 optimize(const NonlinearFactorGraph& graph,
const Values& values, Key landmarkKey);
/**
* Given an initial estimate , refine a point using measurements in several cameras
* @param poses Camera poses
* @param sharedCal shared pointer to single calibration object
* @param measurements 2D measurements
* @param initialEstimate
* @return refined Point3
*/
template<class CALIBRATION>
Point3 triangulateNonlinear(const std::vector<Pose3>& poses,
boost::shared_ptr<CALIBRATION> sharedCal,
const Point2Vector& measurements, const Point3& initialEstimate) {
// Create a factor graph and initial values
Values values;
NonlinearFactorGraph graph;
boost::tie(graph, values) = triangulationGraph<CALIBRATION> //
(poses, sharedCal, measurements, Symbol('p', 0), initialEstimate);
return optimize(graph, values, Symbol('p', 0));
}
/**
* Given an initial estimate , refine a point using measurements in several cameras
* @param cameras pinhole cameras (monocular or stereo)
* @param measurements 2D measurements
* @param initialEstimate
* @return refined Point3
*/
template<class CAMERA>
Point3 triangulateNonlinear(
const CameraSet<CAMERA>& cameras,
const typename CAMERA::MeasurementVector& measurements, const Point3& initialEstimate) {
// Create a factor graph and initial values
Values values;
NonlinearFactorGraph graph;
boost::tie(graph, values) = triangulationGraph<CAMERA> //
(cameras, measurements, Symbol('p', 0), initialEstimate);
return optimize(graph, values, Symbol('p', 0));
}
/**
* Create a 3*4 camera projection matrix from calibration and pose.
* Functor for partial application on calibration
* @param pose The camera pose
* @param cal The calibration
* @return Returns a Matrix34
*/
template<class CALIBRATION>
struct CameraProjectionMatrix {
CameraProjectionMatrix(const CALIBRATION& calibration) :
K_(calibration.K()) {
}
Matrix34 operator()(const Pose3& pose) const {
return K_ * (pose.inverse().matrix()).block<3, 4>(0, 0);
}
private:
const Matrix3 K_;
public:
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
};
/**
* Function to triangulate 3D landmark point from an arbitrary number
* of poses (at least 2) using the DLT. The function checks that the
* resulting point lies in front of all cameras, but has no other checks
* to verify the quality of the triangulation.
* @param poses A vector of camera poses
* @param sharedCal shared pointer to single calibration object
* @param measurements A vector of camera measurements
* @param rank_tol rank tolerance, default 1e-9
* @param optimize Flag to turn on nonlinear refinement of triangulation
* @return Returns a Point3
*/
template<class CALIBRATION>
Point3 triangulatePoint3(const std::vector<Pose3>& poses,
boost::shared_ptr<CALIBRATION> sharedCal,
const Point2Vector& measurements, double rank_tol = 1e-9,
bool optimize = false) {
assert(poses.size() == measurements.size());
if (poses.size() < 2)
throw(TriangulationUnderconstrainedException());
// construct projection matrices from poses & calibration
std::vector<Matrix34, Eigen::aligned_allocator<Matrix34>> projection_matrices;
CameraProjectionMatrix<CALIBRATION> createP(*sharedCal); // partially apply
for(const Pose3& pose: poses)
projection_matrices.push_back(createP(pose));
// Triangulate linearly
Point3 point = triangulateDLT(projection_matrices, measurements, rank_tol);
// Then refine using non-linear optimization
if (optimize)
point = triangulateNonlinear<CALIBRATION> //
(poses, sharedCal, measurements, point);
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
// verify that the triangulated point lies in front of all cameras
for(const Pose3& pose: poses) {
const Point3& p_local = pose.transformTo(point);
if (p_local.z() <= 0)
throw(TriangulationCheiralityException());
}
#endif
return point;
}
/**
* Function to triangulate 3D landmark point from an arbitrary number
* of poses (at least 2) using the DLT. This function is similar to the one
* above, except that each camera has its own calibration. The function
* checks that the resulting point lies in front of all cameras, but has
* no other checks to verify the quality of the triangulation.
* @param cameras pinhole cameras
* @param measurements A vector of camera measurements
* @param rank_tol rank tolerance, default 1e-9
* @param optimize Flag to turn on nonlinear refinement of triangulation
* @return Returns a Point3
*/
template<class CAMERA>
Point3 triangulatePoint3(
const CameraSet<CAMERA>& cameras,
const typename CAMERA::MeasurementVector& measurements, double rank_tol = 1e-9,
bool optimize = false) {
size_t m = cameras.size();
assert(measurements.size() == m);
if (m < 2)
throw(TriangulationUnderconstrainedException());
// construct projection matrices from poses & calibration
std::vector<Matrix34, Eigen::aligned_allocator<Matrix34>> projection_matrices;
for(const CAMERA& camera: cameras)
projection_matrices.push_back(
CameraProjectionMatrix<typename CAMERA::CalibrationType>(camera.calibration())(
camera.pose()));
Point3 point = triangulateDLT(projection_matrices, measurements, rank_tol);
// The n refine using non-linear optimization
if (optimize)
point = triangulateNonlinear<CAMERA>(cameras, measurements, point);
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
// verify that the triangulated point lies in front of all cameras
for(const CAMERA& camera: cameras) {
const Point3& p_local = camera.pose().transformTo(point);
if (p_local.z() <= 0)
throw(TriangulationCheiralityException());
}
#endif
return point;
}
/// Pinhole-specific version
template<class CALIBRATION>
Point3 triangulatePoint3(
const CameraSet<PinholeCamera<CALIBRATION> >& cameras,
const Point2Vector& measurements, double rank_tol = 1e-9,
bool optimize = false) {
return triangulatePoint3<PinholeCamera<CALIBRATION> > //
(cameras, measurements, rank_tol, optimize);
}
struct GTSAM_EXPORT TriangulationParameters {
double rankTolerance; ///< threshold to decide whether triangulation is result.degenerate
///< (the rank is the number of singular values of the triangulation matrix which are larger than rankTolerance)
bool enableEPI; ///< if set to true, will refine triangulation using LM
/**
* if the landmark is triangulated at distance larger than this,
* result is flagged as degenerate.
*/
double landmarkDistanceThreshold; //
/**
* If this is nonnegative the we will check if the average reprojection error
* is smaller than this threshold after triangulation, otherwise result is
* flagged as degenerate.
*/
double dynamicOutlierRejectionThreshold;
/**
* Constructor
* @param rankTol tolerance used to check if point triangulation is degenerate
* @param enableEPI if true refine triangulation with embedded LM iterations
* @param landmarkDistanceThreshold flag as degenerate if point further than this
* @param dynamicOutlierRejectionThreshold or if average error larger than this
*
*/
TriangulationParameters(const double _rankTolerance = 1.0,
const bool _enableEPI = false, double _landmarkDistanceThreshold = -1,
double _dynamicOutlierRejectionThreshold = -1) :
rankTolerance(_rankTolerance), enableEPI(_enableEPI), //
landmarkDistanceThreshold(_landmarkDistanceThreshold), //
dynamicOutlierRejectionThreshold(_dynamicOutlierRejectionThreshold) {
}
// stream to output
friend std::ostream &operator<<(std::ostream &os,
const TriangulationParameters& p) {
os << "rankTolerance = " << p.rankTolerance << std::endl;
os << "enableEPI = " << p.enableEPI << std::endl;
os << "landmarkDistanceThreshold = " << p.landmarkDistanceThreshold
<< std::endl;
os << "dynamicOutlierRejectionThreshold = "
<< p.dynamicOutlierRejectionThreshold << std::endl;
return os;
}
private:
/// Serialization function
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & BOOST_SERIALIZATION_NVP(rankTolerance);
ar & BOOST_SERIALIZATION_NVP(enableEPI);
ar & BOOST_SERIALIZATION_NVP(landmarkDistanceThreshold);
ar & BOOST_SERIALIZATION_NVP(dynamicOutlierRejectionThreshold);
}
};
/**
* TriangulationResult is an optional point, along with the reasons why it is invalid.
*/
class TriangulationResult: public boost::optional<Point3> {
enum Status {
VALID, DEGENERATE, BEHIND_CAMERA, OUTLIER, FAR_POINT
};
Status status_;
TriangulationResult(Status s) :
status_(s) {
}
public:
/**
* Default constructor, only for serialization
*/
TriangulationResult() {}
/**
* Constructor
*/
TriangulationResult(const Point3& p) :
status_(VALID) {
reset(p);
}
static TriangulationResult Degenerate() {
return TriangulationResult(DEGENERATE);
}
static TriangulationResult Outlier() {
return TriangulationResult(OUTLIER);
}
static TriangulationResult FarPoint() {
return TriangulationResult(FAR_POINT);
}
static TriangulationResult BehindCamera() {
return TriangulationResult(BEHIND_CAMERA);
}
bool valid() const {
return status_ == VALID;
}
bool degenerate() const {
return status_ == DEGENERATE;
}
bool outlier() const {
return status_ == OUTLIER;
}
bool farPoint() const {
return status_ == FAR_POINT;
}
bool behindCamera() const {
return status_ == BEHIND_CAMERA;
}
// stream to output
friend std::ostream &operator<<(std::ostream &os,
const TriangulationResult& result) {
if (result)
os << "point = " << *result << std::endl;
else
os << "no point, status = " << result.status_ << std::endl;
return os;
}
private:
/// Serialization function
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & BOOST_SERIALIZATION_NVP(status_);
}
};
/// triangulateSafe: extensive checking of the outcome
template<class CAMERA>
TriangulationResult triangulateSafe(const CameraSet<CAMERA>& cameras,
const typename CAMERA::MeasurementVector& measured,
const TriangulationParameters& params) {
size_t m = cameras.size();
// if we have a single pose the corresponding factor is uninformative
if (m < 2)
return TriangulationResult::Degenerate();
else
// We triangulate the 3D position of the landmark
try {
Point3 point = triangulatePoint3<CAMERA>(cameras, measured,
params.rankTolerance, params.enableEPI);
// Check landmark distance and re-projection errors to avoid outliers
size_t i = 0;
double maxReprojError = 0.0;
for(const CAMERA& camera: cameras) {
const Pose3& pose = camera.pose();
if (params.landmarkDistanceThreshold > 0
&& distance3(pose.translation(), point)
> params.landmarkDistanceThreshold)
return TriangulationResult::FarPoint();
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
// verify that the triangulated point lies in front of all cameras
// Only needed if this was not yet handled by exception
const Point3& p_local = pose.transformTo(point);
if (p_local.z() <= 0)
return TriangulationResult::BehindCamera();
#endif
// Check reprojection error
if (params.dynamicOutlierRejectionThreshold > 0) {
const Point2& zi = measured.at(i);
Point2 reprojectionError(camera.project(point) - zi);
maxReprojError = std::max(maxReprojError, reprojectionError.norm());
}
i += 1;
}
// Flag as degenerate if average reprojection error is too large
if (params.dynamicOutlierRejectionThreshold > 0
&& maxReprojError > params.dynamicOutlierRejectionThreshold)
return TriangulationResult::Outlier();
// all good!
return TriangulationResult(point);
} catch (TriangulationUnderconstrainedException&) {
// This exception is thrown if
// 1) There is a single pose for triangulation - this should not happen because we checked the number of poses before
// 2) The rank of the matrix used for triangulation is < 3: rotation-only, parallel cameras (or motion towards the landmark)
return TriangulationResult::Degenerate();
} catch (TriangulationCheiralityException&) {
// point is behind one of the cameras: can be the case of close-to-parallel cameras or may depend on outliers
return TriangulationResult::BehindCamera();
}
}
} // \namespace gtsam