gtsam/gtsam/base/Matrix.h

605 lines
20 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Matrix.h
* @brief typedef and functions to augment Eigen's MatrixXd
* @author Christian Potthast
* @author Kai Ni
* @author Frank Dellaert
* @author Alex Cunningham
* @author Alex Hagiopol
* @author Varun Agrawal
*/
// \callgraph
#pragma once
#include <gtsam/base/OptionalJacobian.h>
#include <gtsam/base/Vector.h>
#include <gtsam/config.h>
#include <boost/format.hpp>
#include <boost/function.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
/**
* Matrix is a typedef in the gtsam namespace
* TODO: make a version to work with matlab wrapping
* we use the default < double,col_major,unbounded_array<double> >
*/
namespace gtsam {
typedef Eigen::MatrixXd Matrix;
typedef Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> MatrixRowMajor;
// Create handy typedefs and constants for square-size matrices
// MatrixMN, MatrixN = MatrixNN, I_NxN, and Z_NxN, for M,N=1..9
#define GTSAM_MAKE_MATRIX_DEFS(N) \
typedef Eigen::Matrix<double, N, N> Matrix##N; \
typedef Eigen::Matrix<double, 1, N> Matrix1##N; \
typedef Eigen::Matrix<double, 2, N> Matrix2##N; \
typedef Eigen::Matrix<double, 3, N> Matrix3##N; \
typedef Eigen::Matrix<double, 4, N> Matrix4##N; \
typedef Eigen::Matrix<double, 5, N> Matrix5##N; \
typedef Eigen::Matrix<double, 6, N> Matrix6##N; \
typedef Eigen::Matrix<double, 7, N> Matrix7##N; \
typedef Eigen::Matrix<double, 8, N> Matrix8##N; \
typedef Eigen::Matrix<double, 9, N> Matrix9##N; \
static const Eigen::MatrixBase<Matrix##N>::IdentityReturnType I_##N##x##N = Matrix##N::Identity(); \
static const Eigen::MatrixBase<Matrix##N>::ConstantReturnType Z_##N##x##N = Matrix##N::Zero();
GTSAM_MAKE_MATRIX_DEFS(1);
GTSAM_MAKE_MATRIX_DEFS(2);
GTSAM_MAKE_MATRIX_DEFS(3);
GTSAM_MAKE_MATRIX_DEFS(4);
GTSAM_MAKE_MATRIX_DEFS(5);
GTSAM_MAKE_MATRIX_DEFS(6);
GTSAM_MAKE_MATRIX_DEFS(7);
GTSAM_MAKE_MATRIX_DEFS(8);
GTSAM_MAKE_MATRIX_DEFS(9);
// Matrix expressions for accessing parts of matrices
typedef Eigen::Block<Matrix> SubMatrix;
typedef Eigen::Block<const Matrix> ConstSubMatrix;
// Matrix formatting arguments when printing.
// Akin to Matlab style.
const Eigen::IOFormat& matlabFormat();
/**
* equals with a tolerance
*/
template <class MATRIX>
bool equal_with_abs_tol(const Eigen::DenseBase<MATRIX>& A, const Eigen::DenseBase<MATRIX>& B, double tol = 1e-9) {
const size_t n1 = A.cols(), m1 = A.rows();
const size_t n2 = B.cols(), m2 = B.rows();
if(m1!=m2 || n1!=n2) return false;
for(size_t i=0; i<m1; i++)
for(size_t j=0; j<n1; j++) {
if(!fpEqual(A(i,j), B(i,j), tol)) {
return false;
}
}
return true;
}
/**
* equality is just equal_with_abs_tol 1e-9
*/
inline bool operator==(const Matrix& A, const Matrix& B) {
return equal_with_abs_tol(A,B,1e-9);
}
/**
* inequality
*/
inline bool operator!=(const Matrix& A, const Matrix& B) {
return !(A==B);
}
/**
* equals with an tolerance, prints out message if unequal
*/
GTSAM_EXPORT bool assert_equal(const Matrix& A, const Matrix& B, double tol = 1e-9);
/**
* inequals with an tolerance, prints out message if within tolerance
*/
GTSAM_EXPORT bool assert_inequal(const Matrix& A, const Matrix& B, double tol = 1e-9);
/**
* equals with an tolerance, prints out message if unequal
*/
GTSAM_EXPORT bool assert_equal(const std::list<Matrix>& As, const std::list<Matrix>& Bs, double tol = 1e-9);
/**
* check whether the rows of two matrices are linear independent
*/
GTSAM_EXPORT bool linear_independent(const Matrix& A, const Matrix& B, double tol = 1e-9);
/**
* check whether the rows of two matrices are linear dependent
*/
GTSAM_EXPORT bool linear_dependent(const Matrix& A, const Matrix& B, double tol = 1e-9);
/**
* overload ^ for trans(A)*v
* We transpose the vectors for speed.
*/
GTSAM_EXPORT Vector operator^(const Matrix& A, const Vector & v);
/** products using old-style format to improve compatibility */
template<class MATRIX>
inline MATRIX prod(const MATRIX& A, const MATRIX&B) {
MATRIX result = A * B;
return result;
}
/**
* print without optional string, must specify cout yourself
*/
GTSAM_EXPORT void print(const Matrix& A, const std::string& s, std::ostream& stream);
/**
* print with optional string to cout
*/
GTSAM_EXPORT void print(const Matrix& A, const std::string& s = "");
/**
* save a matrix to file, which can be loaded by matlab
*/
GTSAM_EXPORT void save(const Matrix& A, const std::string &s, const std::string& filename);
/**
* Read a matrix from an input stream, such as a file. Entries can be either
* tab-, space-, or comma-separated, similar to the format read by the MATLAB
* dlmread command.
*/
GTSAM_EXPORT std::istream& operator>>(std::istream& inputStream, Matrix& destinationMatrix);
/**
* extract submatrix, slice semantics, i.e. range = [i1,i2[ excluding i2
* @param A matrix
* @param i1 first row index
* @param i2 last row index + 1
* @param j1 first col index
* @param j2 last col index + 1
* @return submatrix A(i1:i2-1,j1:j2-1)
*/
template<class MATRIX>
Eigen::Block<const MATRIX> sub(const MATRIX& A, size_t i1, size_t i2, size_t j1, size_t j2) {
size_t m=i2-i1, n=j2-j1;
return A.block(i1,j1,m,n);
}
/**
* insert a submatrix IN PLACE at a specified location in a larger matrix
* NOTE: there is no size checking
* @param fullMatrix matrix to be updated
* @param subMatrix matrix to be inserted
* @param i is the row of the upper left corner insert location
* @param j is the column of the upper left corner insert location
*/
template <typename Derived1, typename Derived2>
void insertSub(Eigen::MatrixBase<Derived1>& fullMatrix, const Eigen::MatrixBase<Derived2>& subMatrix, size_t i, size_t j) {
fullMatrix.block(i, j, subMatrix.rows(), subMatrix.cols()) = subMatrix;
}
/**
* Create a matrix with submatrices along its diagonal
*/
GTSAM_EXPORT Matrix diag(const std::vector<Matrix>& Hs);
/**
* Extracts a column view from a matrix that avoids a copy
* @param A matrix to extract column from
* @param j index of the column
* @return a const view of the matrix
*/
template<class MATRIX>
const typename MATRIX::ConstColXpr column(const MATRIX& A, size_t j) {
return A.col(j);
}
/**
* Extracts a row view from a matrix that avoids a copy
* @param A matrix to extract row from
* @param j index of the row
* @return a const view of the matrix
*/
template<class MATRIX>
const typename MATRIX::ConstRowXpr row(const MATRIX& A, size_t j) {
return A.row(j);
}
/**
* Zeros all of the elements below the diagonal of a matrix, in place
* @param A is a matrix, to be modified in place
* @param cols is the number of columns to zero, use zero for all columns
*/
template<class MATRIX>
void zeroBelowDiagonal(MATRIX& A, size_t cols=0) {
const size_t m = A.rows(), n = A.cols();
const size_t k = (cols) ? std::min(cols, std::min(m,n)) : std::min(m,n);
for (size_t j=0; j<k; ++j)
A.col(j).segment(j+1, m-(j+1)).setZero();
}
/**
* static transpose function, just calls Eigen transpose member function
*/
inline Matrix trans(const Matrix& A) { return A.transpose(); }
/// Reshape functor
template <int OutM, int OutN, int OutOptions, int InM, int InN, int InOptions>
struct Reshape {
//TODO replace this with Eigen's reshape function as soon as available. (There is a PR already pending : https://bitbucket.org/eigen/eigen/pull-request/41/reshape/diff)
typedef Eigen::Map<const Eigen::Matrix<double, OutM, OutN, OutOptions> > ReshapedType;
static inline ReshapedType reshape(const Eigen::Matrix<double, InM, InN, InOptions> & in) {
return in.data();
}
};
/// Reshape specialization that does nothing as shape stays the same (needed to not be ambiguous for square input equals square output)
template <int M, int InOptions>
struct Reshape<M, M, InOptions, M, M, InOptions> {
typedef const Eigen::Matrix<double, M, M, InOptions> & ReshapedType;
static inline ReshapedType reshape(const Eigen::Matrix<double, M, M, InOptions> & in) {
return in;
}
};
/// Reshape specialization that does nothing as shape stays the same
template <int M, int N, int InOptions>
struct Reshape<M, N, InOptions, M, N, InOptions> {
typedef const Eigen::Matrix<double, M, N, InOptions> & ReshapedType;
static inline ReshapedType reshape(const Eigen::Matrix<double, M, N, InOptions> & in) {
return in;
}
};
/// Reshape specialization that does transpose
template <int M, int N, int InOptions>
struct Reshape<N, M, InOptions, M, N, InOptions> {
typedef typename Eigen::Matrix<double, M, N, InOptions>::ConstTransposeReturnType ReshapedType;
static inline ReshapedType reshape(const Eigen::Matrix<double, M, N, InOptions> & in) {
return in.transpose();
}
};
template <int OutM, int OutN, int OutOptions, int InM, int InN, int InOptions>
inline typename Reshape<OutM, OutN, OutOptions, InM, InN, InOptions>::ReshapedType reshape(const Eigen::Matrix<double, InM, InN, InOptions> & m){
BOOST_STATIC_ASSERT(InM * InN == OutM * OutN);
return Reshape<OutM, OutN, OutOptions, InM, InN, InOptions>::reshape(m);
}
/**
* QR factorization, inefficient, best use imperative householder below
* m*n matrix -> m*m Q, m*n R
* @param A a matrix
* @return <Q,R> rotation matrix Q, upper triangular R
*/
GTSAM_EXPORT std::pair<Matrix,Matrix> qr(const Matrix& A);
/**
* QR factorization using Eigen's internal block QR algorithm
* @param A is the input matrix, and is the output
* @param clear_below_diagonal enables zeroing out below diagonal
*/
GTSAM_EXPORT void inplace_QR(Matrix& A);
/**
* Imperative algorithm for in-place full elimination with
* weights and constraint handling
* @param A is a matrix to eliminate
* @param b is the rhs
* @param sigmas is a vector of the measurement standard deviation
* @return list of r vectors, d and sigma
*/
GTSAM_EXPORT std::list<boost::tuple<Vector, double, double> >
weighted_eliminate(Matrix& A, Vector& b, const Vector& sigmas);
/**
* Householder transformation, Householder vectors below diagonal
* @param k number of columns to zero out below diagonal
* @param A matrix
* @param copy_vectors - true to copy Householder vectors below diagonal
* @return nothing: in place !!!
*/
GTSAM_EXPORT void householder_(Matrix& A, size_t k, bool copy_vectors=true);
/**
* Householder tranformation, zeros below diagonal
* @param k number of columns to zero out below diagonal
* @param A matrix
* @return nothing: in place !!!
*/
GTSAM_EXPORT void householder(Matrix& A, size_t k);
/**
* backSubstitute U*x=b
* @param U an upper triangular matrix
* @param b an RHS vector
* @param unit, set true if unit triangular
* @return the solution x of U*x=b
*/
GTSAM_EXPORT Vector backSubstituteUpper(const Matrix& U, const Vector& b, bool unit=false);
/**
* backSubstitute x'*U=b'
* @param U an upper triangular matrix
* @param b an RHS vector
* @param unit, set true if unit triangular
* @return the solution x of x'*U=b'
*/
//TODO: is this function necessary? it isn't used
GTSAM_EXPORT Vector backSubstituteUpper(const Vector& b, const Matrix& U, bool unit=false);
/**
* backSubstitute L*x=b
* @param L an lower triangular matrix
* @param b an RHS vector
* @param unit, set true if unit triangular
* @return the solution x of L*x=b
*/
GTSAM_EXPORT Vector backSubstituteLower(const Matrix& L, const Vector& b, bool unit=false);
/**
* create a matrix by stacking other matrices
* Given a set of matrices: A1, A2, A3...
* @param ... pointers to matrices to be stacked
* @return combined matrix [A1; A2; A3]
*/
GTSAM_EXPORT Matrix stack(size_t nrMatrices, ...);
GTSAM_EXPORT Matrix stack(const std::vector<Matrix>& blocks);
/**
* create a matrix by concatenating
* Given a set of matrices: A1, A2, A3...
* If all matrices have the same size, specifying single matrix dimensions
* will avoid the lookup of dimensions
* @param matrices is a vector of matrices in the order to be collected
* @param m is the number of rows of a single matrix
* @param n is the number of columns of a single matrix
* @return combined matrix [A1 A2 A3]
*/
GTSAM_EXPORT Matrix collect(const std::vector<const Matrix *>& matrices, size_t m = 0, size_t n = 0);
GTSAM_EXPORT Matrix collect(size_t nrMatrices, ...);
/**
* scales a matrix row or column by the values in a vector
* Arguments (Matrix, Vector) scales the columns,
* (Vector, Matrix) scales the rows
* @param inf_mask when true, will not scale with a NaN or inf value.
*/
GTSAM_EXPORT void vector_scale_inplace(const Vector& v, Matrix& A, bool inf_mask = false); // row
GTSAM_EXPORT Matrix vector_scale(const Vector& v, const Matrix& A, bool inf_mask = false); // row
GTSAM_EXPORT Matrix vector_scale(const Matrix& A, const Vector& v, bool inf_mask = false); // column
/**
* skew symmetric matrix returns this:
* 0 -wz wy
* wz 0 -wx
* -wy wx 0
* @param wx 3 dimensional vector
* @param wy
* @param wz
* @return a 3*3 skew symmetric matrix
*/
inline Matrix3 skewSymmetric(double wx, double wy, double wz) {
return (Matrix3() << 0.0, -wz, +wy, +wz, 0.0, -wx, -wy, +wx, 0.0).finished();
}
template <class Derived>
inline Matrix3 skewSymmetric(const Eigen::MatrixBase<Derived>& w) {
return skewSymmetric(w(0), w(1), w(2));
}
/** Use Cholesky to calculate inverse square root of a matrix */
GTSAM_EXPORT Matrix inverse_square_root(const Matrix& A);
/** Return the inverse of a S.P.D. matrix. Inversion is done via Cholesky decomposition. */
GTSAM_EXPORT Matrix cholesky_inverse(const Matrix &A);
/**
* SVD computes economy SVD A=U*S*V'
* @param A an m*n matrix
* @param U output argument: rotation matrix
* @param S output argument: sorted vector of singular values
* @param V output argument: rotation matrix
* if m > n then U*S*V' = (m*n)*(n*n)*(n*n)
* if m < n then U*S*V' = (m*m)*(m*m)*(m*n)
* Careful! The dimensions above reflect V', not V, which is n*m if m<n.
* U is a basis in R^m, V is a basis in R^n
* You can just pass empty matrices U,V, and vector S, they will be re-allocated.
*/
GTSAM_EXPORT void svd(const Matrix& A, Matrix& U, Vector& S, Matrix& V);
/**
* Direct linear transform algorithm that calls svd
* to find a vector v that minimizes the algebraic error A*v
* @param A of size m*n, where m>=n (pad with zero rows if not!)
* Returns rank of A, minimum error (singular value),
* and corresponding eigenvector (column of V, with A=U*S*V')
*/
GTSAM_EXPORT boost::tuple<int, double, Vector>
DLT(const Matrix& A, double rank_tol = 1e-9);
/**
* Numerical exponential map, naive approach, not industrial strength !!!
* @param A matrix to exponentiate
* @param K number of iterations
*/
GTSAM_EXPORT Matrix expm(const Matrix& A, size_t K=7);
std::string formatMatrixIndented(const std::string& label, const Matrix& matrix, bool makeVectorHorizontal = false);
/**
* Functor that implements multiplication of a vector b with the inverse of a
* matrix A. The derivatives are inspired by Mike Giles' "An extended collection
* of matrix derivative results for forward and reverse mode algorithmic
* differentiation", at https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
*/
template <int N>
struct MultiplyWithInverse {
typedef Eigen::Matrix<double, N, 1> VectorN;
typedef Eigen::Matrix<double, N, N> MatrixN;
/// A.inverse() * b, with optional derivatives
VectorN operator()(const MatrixN& A, const VectorN& b,
OptionalJacobian<N, N* N> H1 = boost::none,
OptionalJacobian<N, N> H2 = boost::none) const {
const MatrixN invA = A.inverse();
const VectorN c = invA * b;
// The derivative in A is just -[c[0]*invA c[1]*invA ... c[N-1]*invA]
if (H1)
for (size_t j = 0; j < N; j++)
H1->template middleCols<N>(N * j) = -c[j] * invA;
// The derivative in b is easy, as invA*b is just a linear map:
if (H2) *H2 = invA;
return c;
}
};
/**
* Functor that implements multiplication with the inverse of a matrix, itself
* the result of a function f. It turn out we only need the derivatives of the
* operator phi(a): b -> f(a) * b
*/
template <typename T, int N>
struct MultiplyWithInverseFunction {
enum { M = traits<T>::dimension };
typedef Eigen::Matrix<double, N, 1> VectorN;
typedef Eigen::Matrix<double, N, N> MatrixN;
// The function phi should calculate f(a)*b, with derivatives in a and b.
// Naturally, the derivative in b is f(a).
typedef boost::function<VectorN(
const T&, const VectorN&, OptionalJacobian<N, M>, OptionalJacobian<N, N>)>
Operator;
/// Construct with function as explained above
MultiplyWithInverseFunction(const Operator& phi) : phi_(phi) {}
/// f(a).inverse() * b, with optional derivatives
VectorN operator()(const T& a, const VectorN& b,
OptionalJacobian<N, M> H1 = boost::none,
OptionalJacobian<N, N> H2 = boost::none) const {
MatrixN A;
phi_(a, b, boost::none, A); // get A = f(a) by calling f once
const MatrixN invA = A.inverse();
const VectorN c = invA * b;
if (H1) {
Eigen::Matrix<double, N, M> H;
phi_(a, c, H, boost::none); // get derivative H of forward mapping
*H1 = -invA* H;
}
if (H2) *H2 = invA;
return c;
}
private:
const Operator phi_;
};
GTSAM_EXPORT Matrix LLt(const Matrix& A);
GTSAM_EXPORT Matrix RtR(const Matrix& A);
GTSAM_EXPORT Vector columnNormSquare(const Matrix &A);
} // namespace gtsam
#include <boost/serialization/nvp.hpp>
#include <boost/serialization/array.hpp>
#include <boost/serialization/split_free.hpp>
namespace boost {
namespace serialization {
/**
* Ref. https://stackoverflow.com/questions/18382457/eigen-and-boostserialize/22903063#22903063
*
* Eigen supports calling resize() on both static and dynamic matrices.
* This allows for a uniform API, with resize having no effect if the static matrix
* is already the correct size.
* https://eigen.tuxfamily.org/dox/group__TutorialMatrixClass.html#TutorialMatrixSizesResizing
*
* We use all the Matrix template parameters to ensure wide compatibility.
*
* eigen_typekit in ROS uses the same code
* http://docs.ros.org/lunar/api/eigen_typekit/html/eigen__mqueue_8cpp_source.html
*/
// split version - sends sizes ahead
template<class Archive,
typename Scalar_,
int Rows_,
int Cols_,
int Ops_,
int MaxRows_,
int MaxCols_>
void save(Archive & ar,
const Eigen::Matrix<Scalar_, Rows_, Cols_, Ops_, MaxRows_, MaxCols_> & m,
const unsigned int /*version*/) {
const size_t rows = m.rows(), cols = m.cols();
ar << BOOST_SERIALIZATION_NVP(rows);
ar << BOOST_SERIALIZATION_NVP(cols);
ar << make_nvp("data", make_array(m.data(), m.size()));
}
template<class Archive,
typename Scalar_,
int Rows_,
int Cols_,
int Ops_,
int MaxRows_,
int MaxCols_>
void load(Archive & ar,
Eigen::Matrix<Scalar_, Rows_, Cols_, Ops_, MaxRows_, MaxCols_> & m,
const unsigned int /*version*/) {
size_t rows, cols;
ar >> BOOST_SERIALIZATION_NVP(rows);
ar >> BOOST_SERIALIZATION_NVP(cols);
m.resize(rows, cols);
ar >> make_nvp("data", make_array(m.data(), m.size()));
}
// templated version of BOOST_SERIALIZATION_SPLIT_FREE(Eigen::Matrix);
template<class Archive,
typename Scalar_,
int Rows_,
int Cols_,
int Ops_,
int MaxRows_,
int MaxCols_>
void serialize(Archive & ar,
Eigen::Matrix<Scalar_, Rows_, Cols_, Ops_, MaxRows_, MaxCols_> & m,
const unsigned int version) {
split_free(ar, m, version);
}
// specialized to Matrix for MATLAB wrapper
template <class Archive>
void serialize(Archive& ar, gtsam::Matrix& m, const unsigned int version) {
split_free(ar, m, version);
}
} // namespace serialization
} // namespace boost