gtsam/gtsam/nonlinear/internal/chiSquaredInverse.h

451 lines
13 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file chiSquaredInverse.h
* @brief This file contains an implementation of the Chi Squared inverse
* function, which is implemented similar to Boost with additional template
* parameter helpers.
*
* A lot of this code has been picked up from
* https://www.boost.org/doc/libs/1_83_0/boost/math/special_functions/detail/igamma_inverse.hpp
* https://www.boost.org/doc/libs/1_83_0/boost/math/tools/roots.hpp
*
* @author Varun Agrawal
*/
#pragma once
#include <gtsam/nonlinear/internal/Utils.h>
#include <algorithm>
// TODO(Varun) remove
#include <boost/math/special_functions/gamma.hpp>
#include <boost/math/tools/roots.hpp>
namespace gtsam {
namespace internal {
/**
* @brief Polynomial evaluation with runtime size.
*
* @tparam T
* @tparam U
*/
template <class T, class U>
inline U evaluate_polynomial(const T* poly, U const& z, std::size_t count) {
assert(count > 0);
U sum = static_cast<U>(poly[count - 1]);
for (int i = static_cast<int>(count) - 2; i >= 0; --i) {
sum *= z;
sum += static_cast<U>(poly[i]);
}
return sum;
}
/**
* @brief Computation of the Incomplete Gamma Function Ratios and their Inverse.
*
* Reference:
* ARMIDO R. DIDONATO and ALFRED H. MORRIS, JR.
* ACM Transactions on Mathematical Software, Vol. 12, No. 4,
* December 1986, Pages 377-393.
*
* See equation 32.
*
* @tparam T
* @param p
* @param q
* @return T
*/
template <class T>
T find_inverse_s(T p, T q) {
T t;
if (p < T(0.5)) {
t = sqrt(-2 * log(p));
} else {
t = sqrt(-2 * log(q));
}
static const double a[4] = {3.31125922108741, 11.6616720288968,
4.28342155967104, 0.213623493715853};
static const double b[5] = {1, 6.61053765625462, 6.40691597760039,
1.27364489782223, 0.3611708101884203e-1};
T s = t - internal::evaluate_polynomial(a, t, 4) /
internal::evaluate_polynomial(b, t, 5);
if (p < T(0.5)) s = -s;
return s;
}
/**
* @brief Computation of the Incomplete Gamma Function Ratios and their Inverse.
*
* Reference:
* ARMIDO R. DIDONATO and ALFRED H. MORRIS, JR.
* ACM Transactions on Mathematical Software, Vol. 12, No. 4,
* December 1986, Pages 377-393.
*
* See equation 34.
*
* @tparam T
* @param a
* @param x
* @param N
* @param tolerance
* @return T
*/
template <class T>
T didonato_SN(T a, T x, unsigned N, T tolerance = 0) {
T sum = 1;
if (N >= 1) {
T partial = x / (a + 1);
sum += partial;
for (unsigned i = 2; i <= N; ++i) {
partial *= x / (a + i);
sum += partial;
if (partial < tolerance) break;
}
}
return sum;
}
/**
* @brief Compute the initial inverse gamma value guess.
*
* We use the implementation in this paper:
* Computation of the Incomplete Gamma Function Ratios and their Inverse
* ARMIDO R. DIDONATO and ALFRED H. MORRIS, JR.
* ACM Transactions on Mathematical Software, Vol. 12, No. 4,
* December 1986, Pages 377-393.
*
* @tparam T
* @param a
* @param p
* @param q
* @param p_has_10_digits
* @return T
*/
template <class T>
T find_inverse_gamma(T a, T p, T q, bool* p_has_10_digits) {
T result;
*p_has_10_digits = false;
// TODO(Varun) replace with egamma_v<double> in C++20
// Euler-Mascheroni constant
double euler = 0.577215664901532860606512090082402431042159335939923598805;
if (a == 1) {
result = -log(q);
} else if (a < 1) {
T g = std::tgamma(a);
T b = q * g;
if ((b > T(0.6)) || ((b >= T(0.45)) && (a >= T(0.3)))) {
// DiDonato & Morris Eq 21:
//
// There is a slight variation from DiDonato and Morris here:
// the first form given here is unstable when p is close to 1,
// making it impossible to compute the inverse of Q(a,x) for small
// q. Fortunately the second form works perfectly well in this case.
T u;
if ((b * q > T(1e-8)) && (q > T(1e-5))) {
u = pow(p * g * a, 1 / a);
} else {
u = exp((-q / a) - euler);
}
result = u / (1 - (u / (a + 1)));
} else if ((a < 0.3) && (b >= 0.35)) {
// DiDonato & Morris Eq 22:
T t = exp(-euler - b);
T u = t * exp(t);
result = t * exp(u);
} else if ((b > 0.15) || (a >= 0.3)) {
// DiDonato & Morris Eq 23:
T y = -log(b);
T u = y - (1 - a) * log(y);
result = y - (1 - a) * log(u) - log(1 + (1 - a) / (1 + u));
} else if (b > 0.1) {
// DiDonato & Morris Eq 24:
T y = -log(b);
T u = y - (1 - a) * log(y);
result = y - (1 - a) * log(u) -
log((u * u + 2 * (3 - a) * u + (2 - a) * (3 - a)) /
(u * u + (5 - a) * u + 2));
} else {
// DiDonato & Morris Eq 25:
T y = -log(b);
T c1 = (a - 1) * log(y);
T c1_2 = c1 * c1;
T c1_3 = c1_2 * c1;
T c1_4 = c1_2 * c1_2;
T a_2 = a * a;
T a_3 = a_2 * a;
T c2 = (a - 1) * (1 + c1);
T c3 = (a - 1) * (-(c1_2 / 2) + (a - 2) * c1 + (3 * a - 5) / 2);
T c4 = (a - 1) * ((c1_3 / 3) - (3 * a - 5) * c1_2 / 2 +
(a_2 - 6 * a + 7) * c1 + (11 * a_2 - 46 * a + 47) / 6);
T c5 = (a - 1) * (-(c1_4 / 4) + (11 * a - 17) * c1_3 / 6 +
(-3 * a_2 + 13 * a - 13) * c1_2 +
(2 * a_3 - 25 * a_2 + 72 * a - 61) * c1 / 2 +
(25 * a_3 - 195 * a_2 + 477 * a - 379) / 12);
T y_2 = y * y;
T y_3 = y_2 * y;
T y_4 = y_2 * y_2;
result = y + c1 + (c2 / y) + (c3 / y_2) + (c4 / y_3) + (c5 / y_4);
if (b < 1e-28f) *p_has_10_digits = true;
}
} else {
// DiDonato and Morris Eq 31:
T s = find_inverse_s(p, q);
T s_2 = s * s;
T s_3 = s_2 * s;
T s_4 = s_2 * s_2;
T s_5 = s_4 * s;
T ra = sqrt(a);
T w = a + s * ra + (s * s - 1) / 3;
w += (s_3 - 7 * s) / (36 * ra);
w -= (3 * s_4 + 7 * s_2 - 16) / (810 * a);
w += (9 * s_5 + 256 * s_3 - 433 * s) / (38880 * a * ra);
if ((a >= 500) && (fabs(1 - w / a) < 1e-6)) {
result = w;
*p_has_10_digits = true;
} else if (p > 0.5) {
if (w < 3 * a) {
result = w;
} else {
T D = (std::max)(T(2), T(a * (a - 1)));
T lg = std::lgamma(a);
T lb = log(q) + lg;
if (lb < -D * T(2.3)) {
// DiDonato and Morris Eq 25:
T y = -lb;
T c1 = (a - 1) * log(y);
T c1_2 = c1 * c1;
T c1_3 = c1_2 * c1;
T c1_4 = c1_2 * c1_2;
T a_2 = a * a;
T a_3 = a_2 * a;
T c2 = (a - 1) * (1 + c1);
T c3 = (a - 1) * (-(c1_2 / 2) + (a - 2) * c1 + (3 * a - 5) / 2);
T c4 =
(a - 1) * ((c1_3 / 3) - (3 * a - 5) * c1_2 / 2 +
(a_2 - 6 * a + 7) * c1 + (11 * a_2 - 46 * a + 47) / 6);
T c5 = (a - 1) * (-(c1_4 / 4) + (11 * a - 17) * c1_3 / 6 +
(-3 * a_2 + 13 * a - 13) * c1_2 +
(2 * a_3 - 25 * a_2 + 72 * a - 61) * c1 / 2 +
(25 * a_3 - 195 * a_2 + 477 * a - 379) / 12);
T y_2 = y * y;
T y_3 = y_2 * y;
T y_4 = y_2 * y_2;
result = y + c1 + (c2 / y) + (c3 / y_2) + (c4 / y_3) + (c5 / y_4);
} else {
// DiDonato and Morris Eq 33:
T u = -lb + (a - 1) * log(w) - log(1 + (1 - a) / (1 + w));
result = -lb + (a - 1) * log(u) - log(1 + (1 - a) / (1 + u));
}
}
} else {
T z = w;
T ap1 = a + 1;
T ap2 = a + 2;
if (w < 0.15f * ap1) {
// DiDonato and Morris Eq 35:
T v = log(p) + std::lgamma(ap1);
z = exp((v + w) / a);
s = std::log1p(z / ap1 * (1 + z / ap2));
z = exp((v + z - s) / a);
s = std::log1p(z / ap1 * (1 + z / ap2));
z = exp((v + z - s) / a);
s = std::log1p(z / ap1 * (1 + z / ap2 * (1 + z / (a + 3))));
z = exp((v + z - s) / a);
}
if ((z <= 0.01 * ap1) || (z > 0.7 * ap1)) {
result = z;
if (z <= T(0.002) * ap1) *p_has_10_digits = true;
} else {
// DiDonato and Morris Eq 36:
T ls = log(didonato_SN(a, z, 100, T(1e-4)));
T v = log(p) + std::lgamma(ap1);
z = exp((v + z - ls) / a);
result = z * (1 - (a * log(z) - z - v + ls) / (a - z));
}
}
}
return result;
}
/**
* @brief Functional to compute the gamma inverse.
* Mainly used with Halley iteration.
*
* @tparam T
*/
template <class T>
struct gamma_p_inverse_func {
gamma_p_inverse_func(T a_, T p_, bool inv) : a(a_), p(p_), invert(inv) {
/*
If p is too near 1 then P(x) - p suffers from cancellation
errors causing our root-finding algorithms to "thrash", better
to invert in this case and calculate Q(x) - (1-p) instead.
Of course if p is *very* close to 1, then the answer we get will
be inaccurate anyway (because there's not enough information in p)
but at least we will converge on the (inaccurate) answer quickly.
*/
if (p > T(0.9)) {
p = 1 - p;
invert = !invert;
}
}
std::tuple<T, T, T> operator()(const T& x) const {
// Calculate P(x) - p and the first two derivates, or if the invert
// flag is set, then Q(x) - q and it's derivatives.
T f, f1;
T ft;
f = static_cast<T>(gamma_incomplete_imp(a, x, true, invert, &ft));
f1 = ft;
T f2;
T div = (a - x - 1) / x;
f2 = f1;
if (fabs(div) > 1) {
if (internal::LIM<T>::max() / fabs(div) < f2) {
// overflow:
f2 = -internal::LIM<T>::max() / 2;
} else {
f2 *= div;
}
} else {
f2 *= div;
}
if (invert) {
f1 = -f1;
f2 = -f2;
}
return std::make_tuple(static_cast<T>(f - p), f1, f2);
}
private:
T a, p;
bool invert;
};
template <typename T>
T gamma_p_inv_imp(const T a, const T p) {
if (is_nan(a) || is_nan(p)) {
return LIM<T>::quiet_NaN();
if (a <= T(0)) {
throw std::runtime_error(
"Argument a in the incomplete gamma function inverse must be >= 0.");
}
} else if (p < T(0) || p > T(1)) {
throw std::runtime_error(
"Probability must be in the range [0,1] in the incomplete gamma "
"function inverse.");
} else if (p == T(0)) {
return 0;
}
// Get an initial guess (https://dl.acm.org/doi/abs/10.1145/22721.23109)
bool has_10_digits = false;
T guess = find_inverse_gamma<T>(a, p, 1 - p, &has_10_digits);
if (has_10_digits) {
return guess;
}
T lower = LIM<T>::min();
if (guess <= lower) {
guess = LIM<T>::min();
}
// The number of digits to converge to.
// This is an arbitrary but reasonable number,
// though Boost does more sophisticated things
// using the first derivative.
unsigned digits = 25;
// Number of Halley iterations
uintmax_t max_iter = 200;
// TODO
// Perform Halley iteration for root-finding to get a more refined answer
// guess = halley_iterate(gamma_p_inverse_func<T>(a, p, false), guess, lower,
// LIM<T>::max(), digits, max_iter);
// Go ahead and iterate:
// guess = boost::math::tools::halley_iterate(
// internal::gamma_p_inverse_func<T>(a, p, false), guess, lower,
// LIM<T>::max(), digits, max_iter);
guess = boost::math::tools::halley_iterate(
boost::math::detail::gamma_p_inverse_func<
T, boost::math::policies::policy<>>(a, p, false),
guess, lower, boost::math::tools::max_value<T>(), digits, max_iter);
if (guess == lower) {
throw std::runtime_error(
"Expected result known to be non-zero, but is smaller than the "
"smallest available number.");
}
return guess;
}
/**
* Compile-time check for inverse incomplete gamma function
*
* @param a a real-valued, non-negative input.
* @param p a real-valued input with values in the unit-interval.
*/
template <typename T1, typename T2>
constexpr common_return_t<T1, T2> incomplete_gamma_inv(const T1 a,
const T2 p) noexcept {
return internal::gamma_p_inv_imp(static_cast<common_return_t<T1, T2>>(a),
static_cast<common_return_t<T1, T2>>(p));
}
/**
* @brief Compute the quantile function of the Chi-Squared distribution.
*
* @param dofs Degrees of freedom
* @param alpha Quantile value
* @return double
*/
double chi_squared_quantile(const double dofs, const double alpha) {
// The quantile function of the Chi-squared distribution is the quantile of
// the specific (inverse) incomplete Gamma distribution
return 2 * incomplete_gamma_inv(dofs / 2, alpha);
}
} // namespace internal
} // namespace gtsam