gtsam/gtsam_unstable/nonlinear/tests/testSQPSimple.cpp

371 lines
12 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testQPSimple.cpp
* @brief Unit tests for testQPSimple
* @author Krunal Chande
* @author Duy-Nguyen Ta
* @author Luca Carlone
* @date Dec 15, 2014
*/
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/nonlinear/LinearContainerFactor.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam_unstable/linear/QPSolver.h>
#include <gtsam_unstable/nonlinear/SQPSimple.h>
#include <gtsam_unstable/nonlinear/NonlinearInequality.h>
#include <CppUnitLite/TestHarness.h>
#include <iostream>
using namespace std;
using namespace gtsam::symbol_shorthand;
using namespace gtsam;
const double tol = 1e-10;
//******************************************************************************
// x + y - 1 = 0
class ConstraintProblem1 : public NonlinearConstraint2<double, double> {
typedef NonlinearConstraint2<double, double> Base;
public:
ConstraintProblem1(Key xK, Key yK, Key dualKey) : Base(xK, yK, dualKey, 1) {}
// x + y - 1
Vector evaluateError(const double& x, const double& y,
boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 =
boost::none) const {
if (H1) *H1 = eye(1);
if (H2) *H2 = eye(1);
return (Vector(1) << x + y - 1.0).finished();
}
};
TEST(testSQPSimple, QPProblem) {
const Key dualKey = 0;
// Simple quadratic cost: x1^2 + x2^2
// Note the Hessian encodes:
// 0.5*x1'*G11*x1 + x1'*G12*x2 + 0.5*x2'*G22*x2 - x1'*g1 - x2'*g2 + 0.5*f
// Hence here we have G11 = 2, G12 = 0, G22 = 2, g1 = 0, g2 = 0, f = 0
HessianFactor hf(X(1), Y(1), 2.0 * ones(1,1), zero(1), zero(1),
2*ones(1,1), zero(1) , 0);
LinearEqualityFactorGraph equalities;
LinearEquality linearConstraint(X(1), ones(1), Y(1), ones(1), 1*ones(1), dualKey); // x + y - 1 = 0
equalities.push_back(linearConstraint);
// Compare against QP
QP qp;
qp.cost.add(hf);
qp.equalities = equalities;
// instantiate QPsolver
QPSolver qpSolver(qp);
// create initial values for optimization
VectorValues initialVectorValues;
initialVectorValues.insert(X(1), zero(1));
initialVectorValues.insert(Y(1), ones(1));
VectorValues expectedSolution = qpSolver.optimize(initialVectorValues).first;
//Instantiate NLP
NLP nlp;
Values linPoint;
linPoint.insert<Vector1>(X(1), zero(1));
linPoint.insert<Vector1>(Y(1), zero(1));
nlp.cost.add(LinearContainerFactor(hf, linPoint)); // wrap it using linearcontainerfactor
nlp.linearEqualities.add(ConstraintProblem1(X(1), Y(1), dualKey));
Values initialValues;
initialValues.insert(X(1), 0.0);
initialValues.insert(Y(1), 0.0);
// Instantiate SQP
SQPSimple sqpSimple(nlp);
Values actualValues = sqpSimple.optimize(initialValues).first;
DOUBLES_EQUAL(expectedSolution.at(X(1))[0], actualValues.at<double>(X(1)), 1e-100);
DOUBLES_EQUAL(expectedSolution.at(Y(1))[0], actualValues.at<double>(Y(1)), 1e-100);
}
//******************************************************************************
class CircleConstraint : public NonlinearConstraint2<double, double> {
typedef NonlinearConstraint2<double, double> Base;
public:
CircleConstraint(Key xK, Key yK, Key dualKey) : Base(xK, yK, dualKey, 1) {}
Vector evaluateError(const double& x, const double& y,
boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 =
boost::none) const {
if (H1) *H1 = (Matrix(1,1) << 2*(x-1)).finished();
if (H2) *H2 = (Matrix(1,1) << 2*y).finished();
return (Vector(1) << (x-1)*(x-1) + y*y - 0.25).finished();
}
void evaluateHessians(const double& x, const double& y,
std::vector<Matrix>& G11, std::vector<Matrix>& G12,
std::vector<Matrix>& G22) const {
G11.push_back((Matrix(1,1) << 2).finished());
G12.push_back((Matrix(1,1) << 0).finished());
G22.push_back((Matrix(1,1) << 2).finished());
}
};
TEST_UNSAFE(testSQPSimple, quadraticCostNonlinearConstraint) {
const Key dualKey = 0;
//Instantiate NLP
NLP nlp;
// Simple quadratic cost: x1^2 + x2^2 +1000
// Note the Hessian encodes:
// 0.5*x1'*G11*x1 + x1'*G12*x2 + 0.5*x2'*G22*x2 - x1'*g1 - x2'*g2 + 0.5*f
// Hence here we have G11 = 2, G12 = 0, G22 = 2, g1 = 0, g2 = 0, f = 0
Values linPoint;
linPoint.insert<Vector1>(X(1), zero(1));
linPoint.insert<Vector1>(Y(1), zero(1));
HessianFactor hf(X(1), Y(1), 2.0 * ones(1,1), zero(1), zero(1),
2*ones(1,1), zero(1) , 1000);
nlp.cost.add(LinearContainerFactor(hf, linPoint)); // wrap it using linearcontainerfactor
nlp.nonlinearEqualities.add(CircleConstraint(X(1), Y(1), dualKey));
Values initialValues;
initialValues.insert<double>(X(1), 4.0);
initialValues.insert<double>(Y(1), 10.0);
Values expectedSolution;
expectedSolution.insert<double>(X(1), 0.5);
expectedSolution.insert<double>(Y(1), 0.0);
// Instantiate SQP
SQPSimple sqpSimple(nlp);
Values actualSolution = sqpSimple.optimize(initialValues).first;
CHECK(assert_equal(expectedSolution, actualSolution, 1e-10));
}
//******************************************************************************
class LineConstraintX : public NonlinearConstraint1<Pose3> {
typedef NonlinearConstraint1<Pose3> Base;
public:
LineConstraintX(Key key, Key dualKey) : Base(key, dualKey, 1) {
}
double computeError(const Pose3& pose) const {
return pose.x();
}
void evaluateHessians(const Pose3& pose, std::vector<Matrix>& G11) const {
Matrix G11all = Z_6x6;
Vector rT1 = pose.rotation().matrix().row(0);
G11all.block<3,3>(3,0) = skewSymmetric(rT1);
G11.push_back(G11all);
}
Vector evaluateError(const Pose3& pose, boost::optional<Matrix&> H = boost::none) const {
if (H)
*H = (Matrix(1,6) << zeros(1,3), pose.rotation().matrix().row(0)).finished();
return (Vector(1) << pose.x()).finished();
}
};
TEST(testSQPSimple, poseOnALine) {
const Key dualKey = 0;
//Instantiate NLP
NLP nlp;
nlp.cost.add(PriorFactor<Pose3>(X(1), Pose3(Rot3::ypr(0.1, 0.2, 0.3), Point3(1, 0, 0)), noiseModel::Unit::Create(6)));
LineConstraintX constraint(X(1), dualKey);
nlp.nonlinearEqualities.add(constraint);
Values initialValues;
initialValues.insert(X(1), Pose3(Rot3::ypr(0.3, 0.2, 0.3), Point3(1,0,0)));
Values expectedSolution;
expectedSolution.insert(X(1), Pose3(Rot3::ypr(0.1, 0.2, 0.3), Point3()));
// Instantiate SQP
SQPSimple sqpSimple(nlp);
Values actualSolution = sqpSimple.optimize(initialValues).first;
CHECK(assert_equal(expectedSolution, actualSolution, 1e-10));
Pose3 pose(Rot3::ypr(0.1, 0.2, 0.3), Point3());
Matrix hessian = numericalHessian<Pose3>(boost::bind(&LineConstraintX::computeError, constraint, _1), pose, 1e-2);
}
//******************************************************************************
/// x + y - 1 <= 0
class InequalityProblem1 : public NonlinearInequality2<double, double> {
typedef NonlinearInequality2<double, double> Base;
public:
InequalityProblem1(Key xK, Key yK, Key dualKey) : Base(xK, yK, dualKey) {}
double computeError(const double& x, const double& y,
boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 =
boost::none) const {
if (H1) *H1 = eye(1);
if (H2) *H2 = eye(1);
return x + y - 1.0;
}
};
TEST(testSQPSimple, inequalityConstraint) {
const Key dualKey = 0;
// Simple quadratic cost: x^2 + y^2
// Note the Hessian encodes:
// 0.5*x1'*G11*x1 + x1'*G12*x2 + 0.5*x2'*G22*x2 - x1'*g1 - x2'*g2 + 0.5*f
// Hence here we have G11 = 2, G12 = 0, G22 = 2, g1 = 0, g2 = 0, f = 0
HessianFactor hf(X(1), Y(1), 2.0 * ones(1,1), zero(1), zero(1),
2*ones(1,1), zero(1) , 0);
LinearInequalityFactorGraph inequalities;
LinearInequality linearConstraint(X(1), ones(1), Y(1), ones(1), 1.0, dualKey); // x + y - 1 <= 0
inequalities.push_back(linearConstraint);
// Compare against QP
QP qp;
qp.cost.add(hf);
qp.inequalities = inequalities;
// instantiate QPsolver
QPSolver qpSolver(qp);
// create initial values for optimization
VectorValues initialVectorValues;
initialVectorValues.insert(X(1), zero(1));
initialVectorValues.insert(Y(1), zero(1));
VectorValues expectedSolution = qpSolver.optimize(initialVectorValues).first;
//Instantiate NLP
NLP nlp;
Values linPoint;
linPoint.insert<Vector1>(X(1), zero(1));
linPoint.insert<Vector1>(Y(1), zero(1));
nlp.cost.add(LinearContainerFactor(hf, linPoint)); // wrap it using linearcontainerfactor
nlp.linearInequalities.add(InequalityProblem1(X(1), Y(1), dualKey));
Values initialValues;
initialValues.insert(X(1), 1.0);
initialValues.insert(Y(1), -10.0);
// Instantiate SQP
SQPSimple sqpSimple(nlp);
Values actualValues = sqpSimple.optimize(initialValues).first;
DOUBLES_EQUAL(expectedSolution.at(X(1))[0], actualValues.at<double>(X(1)), 1e-10);
DOUBLES_EQUAL(expectedSolution.at(Y(1))[0], actualValues.at<double>(Y(1)), 1e-10);
}
//******************************************************************************
const size_t X_AXIS = 0;
const size_t Y_AXIS = 1;
const size_t Z_AXIS = 2;
/**
* Inequality boundary constraint on one axis (x, y or z)
* axis <= bound
*/
class AxisUpperBound : public NonlinearInequality1<Pose3> {
typedef NonlinearInequality1<Pose3> Base;
size_t axis_;
double bound_;
public:
AxisUpperBound(Key key, size_t axis, double bound, Key dualKey) : Base(key, dualKey), axis_(axis), bound_(bound) {
}
double computeError(const Pose3& pose, boost::optional<Matrix&> H = boost::none) const {
if (H)
*H = (Matrix(1,6) << zeros(1,3), pose.rotation().matrix().row(axis_)).finished();
return pose.translation().vector()[axis_] - bound_;
}
};
/**
* Inequality boundary constraint on one axis (x, y or z)
* bound <= axis
*/
class AxisLowerBound : public NonlinearInequality1<Pose3> {
typedef NonlinearInequality1<Pose3> Base;
size_t axis_;
double bound_;
public:
AxisLowerBound(Key key, size_t axis, double bound, Key dualKey) : Base(key, dualKey), axis_(axis), bound_(bound) {
}
double computeError(const Pose3& pose, boost::optional<Matrix&> H = boost::none) const {
if (H)
*H = (Matrix(1,6) << zeros(1,3), -pose.rotation().matrix().row(axis_)).finished();
return -pose.translation().vector()[axis_] + bound_;
}
};
TEST(testSQPSimple, poseWithABoundary) {
const Key dualKey = 0;
//Instantiate NLP
NLP nlp;
nlp.cost.add(PriorFactor<Pose3>(X(1), Pose3(Rot3::ypr(0.1, 0.2, 0.3), Point3(1, 0, 0)), noiseModel::Unit::Create(6)));
AxisUpperBound constraint(X(1), X_AXIS, 0, dualKey);
nlp.linearInequalities.add(constraint);
Values initialValues;
initialValues.insert(X(1), Pose3(Rot3::ypr(0.3, 0.2, 0.3), Point3(1, 0, 0)));
Values expectedSolution;
expectedSolution.insert(X(1), Pose3(Rot3::ypr(0.1, 0.2, 0.3), Point3(0, 0, 0)));
// Instantiate SQP
SQPSimple sqpSimple(nlp);
Values actualSolution = sqpSimple.optimize(initialValues).first;
CHECK(assert_equal(expectedSolution, actualSolution, 1e-10));
}
TEST(testSQPSimple, poseWithinA2DBox) {
const Key dualKey = 0;
//Instantiate NLP
NLP nlp;
nlp.cost.add(PriorFactor<Pose3>(X(1), Pose3(Rot3::ypr(0.1, 0.2, 0.3), Point3(10, 0.5, 0)), noiseModel::Unit::Create(6)));
nlp.linearInequalities.add(AxisLowerBound(X(1), X_AXIS, -1, dualKey));
nlp.linearInequalities.add(AxisUpperBound(X(1), X_AXIS, 1, dualKey));
nlp.linearInequalities.add(AxisLowerBound(X(1), Y_AXIS, -1, dualKey));
nlp.linearInequalities.add(AxisUpperBound(X(1), Y_AXIS, 1, dualKey));
Values initialValues;
initialValues.insert(X(1), Pose3(Rot3::ypr(0.3, 0.2, 0.3), Point3(1, 0, 0)));
Values expectedSolution;
expectedSolution.insert(X(1), Pose3(Rot3::ypr(0.1, 0.2, 0.3), Point3(1, 0.5, 0)));
// Instantiate SQP
SQPSimple sqpSimple(nlp);
Values actualSolution = sqpSimple.optimize(initialValues).first;
CHECK(assert_equal(expectedSolution, actualSolution, 1e-10));
}
//******************************************************************************
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
//******************************************************************************