gtsam/geometry/Pose3.h

182 lines
5.3 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
*@file Pose3.h
*@brief 3D Pose
*/
// \callgraph
#pragma once
#include <boost/numeric/ublas/vector_proxy.hpp>
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Rot3.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/Lie.h>
namespace gtsam {
/** A 3D pose (R,t) : (Rot3,Point3) */
class Pose3 : Testable<Pose3>, public Lie<Pose3> {
public:
static const size_t dimension = 6;
private:
Rot3 R_;
Point3 t_;
public:
/** Default constructor is origin */
Pose3() {}
/** Copy constructor */
Pose3(const Pose3& pose) : R_(pose.R_), t_(pose.t_) {}
/** Construct from R,t */
Pose3(const Rot3& R, const Point3& t) : R_(R), t_(t) {}
/** Constructor from 4*4 matrix */
Pose3(const Matrix &T) :
R_(T(0, 0), T(0, 1), T(0, 2), T(1, 0), T(1, 1), T(1, 2), T(2, 0),
T(2, 1), T(2, 2)), t_(T(0, 3), T(1, 3), T(2, 3)) {}
/** Constructor from 12D vector */
Pose3(const Vector &V) :
R_(V(0), V(3), V(6), V(1), V(4), V(7), V(2), V(5), V(8)),
t_(V(9), V(10),V(11)) {}
inline const Rot3& rotation() const { return R_; }
inline const Point3& translation() const { return t_; }
inline double x() const { return t_.x(); }
inline double y() const { return t_.y(); }
inline double z() const { return t_.z(); }
/** convert to 4*4 matrix */
Matrix matrix() const;
/** print with optional string */
void print(const std::string& s = "") const;
/** assert equality up to a tolerance */
bool equals(const Pose3& pose, double tol = 1e-9) const;
/** Compose two poses */
inline Pose3 operator*(const Pose3& T) const {
return Pose3(R_*T.R_, t_ + R_*T.t_);
}
Pose3 transform_to(const Pose3& pose) const;
/** dimension of the variable - used to autodetect sizes */
inline static size_t Dim() { return dimension; }
/** Lie requirements */
/** Dimensionality of the tangent space */
inline size_t dim() const { return dimension; }
/**
* Derivative of inverse
*/
Pose3 inverse(boost::optional<Matrix&> H1=boost::none) const;
/**
* composes two poses (first (*this) then p2)
* with optional derivatives
*/
Pose3 compose(const Pose3& p2,
boost::optional<Matrix&> H1=boost::none,
boost::optional<Matrix&> H2=boost::none) const;
/** receives the point in Pose coordinates and transforms it to world coordinates */
Point3 transform_from(const Point3& p,
boost::optional<Matrix&> H1=boost::none, boost::optional<Matrix&> H2=boost::none) const;
/** syntactic sugar for transform */
inline Point3 operator*(const Point3& p) { return transform_from(p); }
/** receives the point in world coordinates and transforms it to Pose coordinates */
Point3 transform_to(const Point3& p,
boost::optional<Matrix&> H1=boost::none, boost::optional<Matrix&> H2=boost::none) const;
/** Exponential map at identity - create a pose with a translation and
* rotation (in canonical coordinates). */
static Pose3 Expmap(const Vector& v);
/** Log map at identity - return the translation and canonical rotation
* coordinates of a pose. */
static Vector Logmap(const Pose3& p);
/** Exponential map around another pose */
Pose3 expmap(const Vector& d) const;
/** Logarithm map around another pose T1 */
Vector logmap(const Pose3& T2) const;
/**
* Return relative pose between p1 and p2, in p1 coordinate frame
* as well as optionally the derivatives
*/
Pose3 between(const Pose3& p2,
boost::optional<Matrix&> H1=boost::none,
boost::optional<Matrix&> H2=boost::none) const;
/**
* Calculate Adjoint map
* Ad_pose is 6*6 matrix that when applied to twist xi, returns Ad_pose(xi)
*/
Matrix AdjointMap() const;
inline Vector Adjoint(const Vector& xi) const {return AdjointMap()*xi; }
/**
* wedge for Pose3:
* @param xi 6-dim twist (omega,v) where
* omega = (wx,wy,wz) 3D angular velocity
* v (vx,vy,vz) = 3D velocity
* @return xihat, 4*4 element of Lie algebra that can be exponentiated
*/
static inline Matrix wedge(double wx, double wy, double wz, double vx, double vy, double vz) {
return Matrix_(4,4,
0.,-wz, wy, vx,
wz, 0.,-wx, vy,
-wy, wx, 0., vz,
0., 0., 0., 0.);
}
private:
/** Serialization function */
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int version) {
ar & BOOST_SERIALIZATION_NVP(R_);
ar & BOOST_SERIALIZATION_NVP(t_);
}
}; // Pose3 class
/**
* wedge for Pose3:
* @param xi 6-dim twist (omega,v) where
* omega = 3D angular velocity
* v = 3D velocity
* @return xihat, 4*4 element of Lie algebra that can be exponentiated
*/
template <>
inline Matrix wedge<Pose3>(const Vector& xi) {
return Pose3::wedge(xi(0),xi(1),xi(2),xi(3),xi(4),xi(5));
}
} // namespace gtsam